Found problems: 2215
2009 Germany Team Selection Test, 3
Find all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ such that $ \forall x,y,z \in \mathbb{R}$ we have: If
\[ x^3 \plus{} f(y) \cdot x \plus{} f(z) \equal{} 0,\]
then
\[ f(x)^3 \plus{} y \cdot f(x) \plus{} z \equal{} 0.\]
2008 Harvard-MIT Mathematics Tournament, 1
How many different values can $ \angle ABC$ take, where $ A,B,C$ are distinct vertices of a cube?
2011 Spain Mathematical Olympiad, 2
Let $a$, $b$, $c$ be positive real numbers. Prove that \[ \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{ab+bc+ca}{a^2+b^2+c^2}}\ge\frac52\] and determine when equality holds.
2005 VTRMC, Problem 6
Compute $\int^1_0\left((e-1)\sqrt{\ln(1+ex-x)}+e^{x^2}\right)dx$.
2007 Germany Team Selection Test, 1
The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$.
[i]Proposed by Mariusz Skalba, Poland[/i]
2015 BMT Spring, 10
Evaluate
$$\int^{\pi/2}_0\ln(4\sin x)dx.$$
2007 F = Ma, 19
A non-Hookian spring has force $F = -kx^2$ where $k$ is the spring constant and $x$ is the displacement from its unstretched position. For the system shown of a mass $m$ connected to an unstretched spring initially at rest, how far does the spring extend before the system momentarily comes to rest? Assume that all surfaces are frictionless and that the pulley is frictionless as well.
[asy]
size(250);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,0)--(0,-1)--(2,-1)--(2+sqrt(3),-2));
draw((2.5,-2)--(4.5,-2),dashed);
draw(circle((2.2,-0.8),0.2));
draw((2.2,-0.8)--(1.8,-1.2));
draw((0,-0.6)--(0.6,-0.6)--(0.75,-0.4)--(0.9,-0.8)--(1.05,-0.4)--(1.2,-0.8)--(1.35,-0.4)--(1.5,-0.8)--(1.65,-0.4)--(1.8,-0.8)--(1.95,-0.6)--(2.2,-0.6));
draw((2+0.3*sqrt(3),-1.3)--(2+0.3*sqrt(3)+0.6/2,-1.3+sqrt(3)*0.6/2)--(2+0.3*sqrt(3)+0.6/2+0.2*sqrt(3),-1.3+sqrt(3)*0.6/2-0.2)--(2+0.3*sqrt(3)+0.2*sqrt(3),-1.3-0.2)); //super complex Asymptote code gg
draw((2+0.3*sqrt(3)+0.3/2,-1.3+sqrt(3)*0.3/2)--(2.35,-0.6677));
draw(anglemark((2,-1),(2+sqrt(3),-2),(2.5,-2)));
label("$30^\circ$",(3.5,-2),NW);
[/asy]
$ \textbf{(A)}\ \left(\frac{3mg}{2k}\right)^{1/2} $
$ \textbf{(B)}\ \left(\frac{mg}{k}\right)^{1/2} $
$ \textbf{(C)}\ \left(\frac{2mg}{k}\right)^{1/2} $
$ \textbf{(D)}\ \left(\frac{\sqrt{3}mg}{k}\right)^{1/3} $
$ \textbf{(E)}\ \left(\frac{3\sqrt{3}mg}{2k}\right)^{1/3} $
Today's calculation of integrals, 849
Evaluate $\int_1^{e^2} \frac{(2x^2+2x+1)e^{x}}{\sqrt{x}}\ dx.$
2001 Junior Balkan Team Selection Tests - Romania, 2
Find all $n\in\mathbb{Z}$ such that the number $\sqrt{\frac{4n-2}{n+5}}$ is rational.
2015 Romania National Olympiad, 4
Find all non-constant polynoms $ f\in\mathbb{Q} [X] $ that don't have any real roots in the interval $ [0,1] $ and for which there exists a function $ \xi :[0,1]\longrightarrow\mathbb{Q} [X]\times\mathbb{Q} [X], \xi (x):=\left( g_x,h_x \right) $ such that $ h_x(x)\neq 0 $ and $ \int_0^x \frac{dt}{f(t)} =\frac{g_x(x)}{h_x(x)} , $ for all $ x\in [0,1] . $
2007 Today's Calculation Of Integral, 214
Find the area of the region surrounded by the two curves $ y=\sqrt{x},\ \sqrt{x}+\sqrt{y}=1$ and the $ x$ axis.
2005 Grigore Moisil Urziceni, 2
Let be a function $ f:\mathbb{R}\longrightarrow\mathbb{R}_{\ge 0} $ that admits primitives and such that $ \lim_{x\to 0 } \frac{f(x)}{x} =0. $ Prove that the function $ g:\mathbb{R}\longrightarrow\mathbb{R} , $ defined as
$$ g(x)=\left\{ \begin{matrix} f(x)/x ,&\quad x\neq 0\\ 0,& \quad x=0 \end{matrix} \right. , $$
is primitivable.
2009 Today's Calculation Of Integral, 501
Find the volume of the uion $ A\cup B\cup C$ of the three subsets $ A,\ B,\ C$ in $ xyz$ space such that:
\[ A\equal{}\{(x,\ y,\ z)\ |\ |x|\leq 1,\ y^2\plus{}z^2\leq 1\}\]
\[ B\equal{}\{(x,\ y,\ z)\ |\ |y|\leq 1,\ z^2\plus{}x^2\leq 1\}\]
\[ C\equal{}\{(x,\ y,\ z)\ |\ |z|\leq 1,\ x^2\plus{}y^2\leq 1\}\]
2010 Today's Calculation Of Integral, 663
Given are the curve $y=x^2+x-2$ and a curve which is obtained by tranfering the curve symmetric with respect to the point $(p,\ 2p)$. Let $p$ change in such a way that these two curves intersects, find the maximum area of the part bounded by these curves.
[i]1978 Nagasaki University entrance exam/Economics[/i]
2007 Today's Calculation Of Integral, 196
Calculate
\[\frac{\int_{0}^{\pi}e^{-x}\sin^{n}x\ dx}{\int_{0}^{\pi}e^{x}\sin^{n}x \ dx}\ (n=1,\ 2,\ \cdots). \]
2013 VTRMC, Problem 1
Let $I=3\sqrt2\int^x_0\frac{\sqrt{1+\cos t}}{17-8\cos t}dt$. If $0<x<\pi$ and $\tan I=\frac2{\sqrt3}$, what is $x$?
2009 Today's Calculation Of Integral, 430
For a natural number $ n$, let $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\tan x)^{2n}dx$.
Answer the following questions.
(1) Find $ a_1$.
(2) Express $ a_{n\plus{}1}$ in terms of $ a_n$.
(3) Find $ \lim_{n\to\infty} a_n$.
(4) Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{(\minus{}1)^{k\plus{}1}}{2k\minus{}1}$.
2007 Today's Calculation Of Integral, 169
(1) Let $f(x)$ be the differentiable and increasing function such that $f(0)=0.$Prove that $\int_{0}^{1}f(x)f'(x)dx\geq \frac{1}{2}\left(\int_{0}^{1}f(x)dx\right)^{2}.$
(2) $g_{n}(x)=x^{2n+1}+a_{n}x+b_{n}\ (n=1,\ 2,\ 3,\ \cdots)$ satisfies $\int_{-1}^{1}(px+q)g_{n}(x)dx=0$ for all linear equations $px+q.$
Find $a_{n},\ b_{n}.$
2005 Today's Calculation Of Integral, 77
Find the area of the part enclosed by the following curve.
\[x^2+2axy+y^2=1\ (-1<a<1)\]
2009 Today's Calculation Of Integral, 455
(1) Evaluate $ \int_1^{3\sqrt{3}} \left(\frac{1}{\sqrt[3]{x^2}}\minus{}\frac{1}{1\plus{}\sqrt[3]{x^2}}\right)\ dx.$
(2) Find the positive real numbers $ a,\ b$ such that for $ t>1,$ $ \lim_{t\rightarrow \infty} \left(\int_1^t \frac{1}{1\plus{}\sqrt[3]{x^2}}\ dx\minus{}at^b\right)$ converges.
2005 Today's Calculation Of Integral, 52
Evaluate
\[\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k\sqrt{-1}}\]
2009 Today's Calculation Of Integral, 450
Let $ a,\ b$ be postive real numbers. Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{n}{(k\plus{}an)(k\plus{}bn)}.$
2019 Korea USCM, 3
Two vector fields $\mathbf{F},\mathbf{G}$ are defined on a three dimensional region $W=\{(x,y,z)\in\mathbb{R}^3 : x^2+y^2\leq 1, |z|\leq 1\}$.
$$\mathbf{F}(x,y,z) = (\sin xy, \sin yz, 0),\quad \mathbf{G} (x,y,z) = (e^{x^2+y^2+z^2}, \cos xz, 0)$$
Evaluate the following integral.
\[\iiint_{W} (\mathbf{G}\cdot \text{curl}(\mathbf{F}) - \mathbf{F}\cdot \text{curl}(\mathbf{G})) dV\]
2011 Today's Calculation Of Integral, 752
Find $f_n(x)$ such that $f_1(x)=x,\ f_n(x)=\int_0^x tf_{n-1}(x-t)dt\ (n=2,\ 3,\ \cdots).$
2012 Today's Calculation Of Integral, 778
In the $xyz$ space with the origin $O$, Let $K_1$ be the surface and inner part of the sphere centered on the point $(1,\ 0,\ 0)$ with radius 2 and let $K_2$ be the surface and inner part of the sphere centered on the point $(-1,\ 0,\ 0)$ with radius 2. For three points $P,\ Q,\ R$ in the space, consider points $X,\ Y$ defined by
\[\overrightarrow{OX}=\overrightarrow{OP}+\overrightarrow{OQ},\ \overrightarrow{OY}=\frac 13(\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}).\]
(1) When $P,\ Q$ move every cranny in $K_1,\ K_2$ respectively, find the volume of the solid generated by the whole points of the point $X$.
(2) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1$.
(3) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1\cup K_2$.