This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15

2000 Saint Petersburg Mathematical Olympiad, 11.6

What is the greatest amount of rooks that can be placed on an $n\times n$ board, such that each rooks beats an even number of rooks? A rook is considered to beat another rook, if they lie on one vertical or one horizontal line and no rooks are between them. [I]Proposed by D. Karpov[/i]

2015 Indonesia MO Shortlist, C1

Given natural number n. Suppose that $N$ is the maximum number of elephants that can be placed on a chessboard measuring $2 \times n$ so that no two elephants are mutually under attack. Determine the number of ways to put $N$ elephants on a chessboard sized $2 \times n$ so that no two elephants attack each other. Alternative Formulation: Determine the number of ways to put $2015$ elephants on a chessboard measuring $2 \times 2015$ so there are no two elephants attacking each othe PS. Elephant = Bishop

2022 Mexico National Olympiad, 2

Tags: 3d , chess , combinatorics
Let $n$ be a positive integer. David has six $n\times n$ chessboards which he arranges in an $n\times n\times n$ cube. Two cells are "aligned" if they can be connected by a path of cells $a=c_1,\ c_2,\ \dots,\ c_m=b$ such that all consecutive cells in the path share a side, and the sides that the cell $c_i$ shares with its neighbors are on opposite sides of the square for $i=2,\ 3,\ \dots\ m-1$. Two towers attack each other if the cells they occupy are aligned. What is the maximum amount of towers he can place on the board such that no two towers attack each other?

2021 Iran RMM TST, 2

In a chess board we call a group of queens [i]independant[/i] if no two are threatening each other. In an $n$ by $n$ grid, we put exaxctly one queen in each cell ofa greed. Let us denote by $M_n$ the minimum number of independant groups that hteir union contains all the queens. Let $k$ be a positive integer, prove that $M_{3k+1} \le 3k+2$ Proposed by [i]Alireza Haghi[/i]

2020 Peru EGMO TST, 6

A table $110\times 110$ is given, we define the distance between two cells $A$ and $B$ as the least quantity of moves to move a chess king from the cell $A$ to cell $B$. We marked $n$ cells on the table $110\times 110$ such that the distance between any two cells is not equal to $15$. Determine the greatest value of $n$.

2017 Bosnia And Herzegovina - Regional Olympiad, 4

How many knights you can put on chess table $5 \times 5$ such that every one of them attacks exactly two other knights ?

2007 Korea National Olympiad, 3

In each $ 2007^{2}$ unit squares on chess board whose size is $ 2007\times 2007$, there lies one coin each square such that their "heads" face upward. Consider the process that flips four consecutive coins on the same row, or flips four consecutive coins on the same column. Doing this process finite times, we want to make the "tails" of all of coins face upward, except one that lies in the $ i$th row and $ j$th column. Show that this is possible if and only if both of $ i$ and $ j$ are divisible by $ 4$.

2015 NIMO Summer Contest, 7

The NIMO problem writers have invented a new chess piece called the [i]Oriented Knight[/i]. This new chess piece has a limited number of moves: it can either move two squares to the right and one square upward or two squares upward and one square to the right. How many ways can the knight move from the bottom-left square to the top-right square of a $16\times 16$ chess board? [i] Proposed by Tony Kim and David Altizio [/i]

2018 Peru Cono Sur TST, 6

Let $n$ be a positive integer. In an $n \times n$ board, two opposite sides have been joined, forming a cylinder. Determine whether it is possible to place $n$ queens on the board such that no two threaten each other when: $a)\:$ $n=14$. $b)\:$ $n=15$.

1975 Bulgaria National Olympiad, Problem 5

Let the [i]subbishop[/i] (a bishop is the figure moving only by a diagonal) be a figure moving only by diagonal but only in the next cells (squares) of the chessboard. Find the maximal count of subbishops over a chessboard $n\times n$, no two of which are not attacking. [i]V. Chukanov[/i]

1981 Putnam, A2

Two distinct squares of the $8\times8$ chessboard $C$ are said to be adjacent if they have a vertex or side in common. Also, $g$ is called a $C$-gap if for every numbering of the squares of $C$ with all the integers $1, 2, \ldots, 64$ there exist twoadjacent squares whose numbers differ by at least $g$. Determine the largest $C$-gap $g$.

2024 Romanian Master of Mathematics, 1

Let $n$ be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^n \times 2^n$ chessboard; those bishops are numbered from $1$ to $2^n$ from left to right. A [i]jump[/i] is a simultaneous move made by all bishops such that each bishop moves diagonally, in a straight line, some number of squares, and at the end of the jump, the bishops all stand in different squares of the same row. Find the total number of permutations $\sigma$ of the numbers $1, 2, \ldots, 2^n$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma(2^n)$, from left to right. [i]Israel[/i]

2008 HMNT, Chess

[u]Chessboards [/u] Joe B. is playing with some chess pieces on a $6\times 6$ chessboard. Help him find out some things. [b]p1.[/b] Joe B. first places the black king in one corner of the board. In how many of the $35$ remaining squares can he place a white bishop so that it does not check the black king? [b]p2.[/b] Joe B. then places a white king in the opposite corner of the board. How many total ways can he place one black bishop and one white bishop so that neither checks the king of the opposite color? [b]p3.[/b] Joe B. now clears the board. How many ways can he place $3$ white rooks and $3$ black rooks on the board so that no two rooks of opposite color can attack each other? [b]p4.[/b] Joe B. is frustrated with chess. He breaks the board, leaving a $4\times 4$ board, and throws $3$ black knights and $3$ white kings at the board. Miraculously, they all land in distinct squares! What is the expected number of checks in the resulting position? (Note that a knight can administer multiple checks and a king can be checked by multiple knights.) [b]p5.[/b] Suppose that at some point Joe B. has placed $2$ black knights on the original board, but gets bored of chess. He now decides to cover the $34$ remaining squares with $17$ dominos so that no two overlap and the dominos cover the entire rest of the board. For how many initial arrangements of the two pieces is this possible? Note: Chess is a game played with pieces of two colors, black and white, that players can move between squares on a rectangular grid. Some of the pieces move in the following ways: $\bullet$ Bishop: This piece can move any number of squares diagonally if there are no other pieces along its path. $\bullet$ Rook: This piece can move any number of squares either vertically or horizontally if there are no other pieces along its path. $\bullet$ Knight: This piece can move either two squares along a row and one square along a column or two squares along a column and one square along a row. $\bullet$ King: This piece can move to any open adjacent square (including diagonally). If a piece can move to a square occupied by a king of the opposite color, we say that it is checking the king. If a piece moves to a square occupied by another piece, this is called attacking.

2007 Polish MO Finals, 3

3. Plane is divided with horizontal and vertical lines into unit squares. Into each square we write a positive integer so that each positive integer appears exactly once. Determine whether it is possible to write numbers in such a way, that each written number is a divisor of a sum of its four neighbours.

2023 Philippine MO, 4

In chess, a knight placed on a chess board can move by jumping to an adjacent square in one direction (up, down, left, or right) then jumping to the next two squares in a perpendicular direction. We then say that a square in a chess board [i]can be attacked[/i] by a knight if the knight can end up on that square after a move. Thus, depending on where a knight is placed, it can attack as many as eight squares, or maybe even less. In a $10 \times 10$ chess board, what is the maximum number of knights that can be placed such that each square on the board can be attacked by at most one knight?