This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 189

2020 Romanian Master of Mathematics Shortlist, C3

Determine the smallest positive integer $k{}$ satisfying the following condition: For any configuration of chess queens on a $100 \times 100$ chequered board, the queens can be coloured one of $k$ colours so that no two queens of the same colour attack each other. [i]Russia, Sergei Avgustinovich and Dmitry Khramtsov[/i]

2011 QEDMO 8th, 4

How many a) bishops b) horses can be positioned on a chessboard at most, so that no one threatens another?

1999 Estonia National Olympiad, 4

Let us put pieces on some squares of $2n \times 2n$ chessboard in such a way that on every horizontal and vertical line there is an odd number of pieces. Prove that the whole number of pieces on the black squares is even.

2005 Tournament of Towns, 3

Originally, every square of $8 \times 8$ chessboard contains a rook. One by one, rooks which attack an odd number of others are removed. Find the maximal number of rooks that can be removed. (A rook attacks another rook if they are on the same row or column and there are no other rooks between them.) [i](5 points)[/i]

2003 Estonia National Olympiad, 1

Jiiri and Mari both wish to tile an $n \times n$ chessboard with cards shown in the picture (each card covers exactly one square). Jiiri wants that for each two cards that have a common edge, the neighbouring parts are of different color, and Mari wants that the neighbouring parts are always of the same color. How many possibilities does Jiiri have to tile the chessboard and how many possibilities does Mari have? [img]https://cdn.artofproblemsolving.com/attachments/7/3/9c076eb17ba7ae7c000a2893c83288a94df384.png[/img]

2014 Indonesia MO Shortlist, C3

Let $n$ be a natural number. Given a chessboard sized $m \times n$. The sides of the small squares of chessboard are not on the perimeter of the chessboard will be colored so that each small square has exactly two sides colored. Prove that a coloring like that is possible if and only if $m \cdot n$ is even.

1990 All Soviet Union Mathematical Olympiad, 519

Can the squares of a $1990 \times 1990$ chessboard be colored black or white so that half the squares in each row and column are black and cells symmetric with respect to the center are of opposite color?

1983 Polish MO Finals, 3

Consider the following one-player game on an infinite chessboard. If two horizontally or vertically adjacent squares are occupied by a pawn each, and a square on the same line that is adjacent to one of them is empty, then it is allowed to remove the two pawns and place a pawn on the third (empty) square. Prove that if in the initial position all the pawns were forming a rectangle with the number of squares divisible by $3$, then it is not possible to end the game with only one pawn left on the board.

2013 Balkan MO Shortlist, C4

A closed, non-self-intersecting broken line $L$ is drawn over a $(2n+1) \times (2n+1)$ chessboard in such a way that the set of L's vertices coincides with the set of the vertices of the board’s squares and every edge in $L$ is a side of some board square. All board squares lying in the interior of $L$ are coloured in red. Prove that the number of neighbouring pairs of red squares in every row of the board is even.

2007 JBMO Shortlist, 3

The nonnegative integer $n$ and $ (2n + 1) \times (2n + 1)$ chessboard with squares colored alternatively black and white are given. For every natural number $m$ with $1 < m < 2n+1$, an $m \times m$ square of the given chessboard that has more than half of its area colored in black, is called a $B$-square. If the given chessboard is a $B$-square, fi nd in terms of $n$ the total number of $B$-squares of this chessboard.

2013 QEDMO 13th or 12th, 5

$16$ pieces of the shape $1\times 3$ are placed on a $7\times 7$ chessboard, each of which is exactly three fields. One field remains free. Find all possible positions of this field.

2009 IMO Shortlist, 6

On a $999\times 999$ board a [i]limp rook[/i] can move in the following way: From any square it can move to any of its adjacent squares, i.e. a square having a common side with it, and every move must be a turn, i.e. the directions of any two consecutive moves must be perpendicular. A [i]non-intersecting route[/i] of the limp rook consists of a sequence of pairwise different squares that the limp rook can visit in that order by an admissible sequence of moves. Such a non-intersecting route is called [i]cyclic[/i], if the limp rook can, after reaching the last square of the route, move directly to the first square of the route and start over. How many squares does the longest possible cyclic, non-intersecting route of a limp rook visit? [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

2006 Dutch Mathematical Olympiad, 5

Player $A$ and player $B$ play the next game on an $8$ by $8$ square chessboard. They in turn color a field that is not yet colored. One player uses red and the other blue. Player $A$ starts. The winner is the first person to color the four squares of a square of $2$ by $2$ squares with his color somewhere on the board. Prove that player $B$ can always prevent player $A$ from winning.

2013 Tournament of Towns, 4

There is a $8\times 8$ table, drawn in a plane and painted in a chess board fashion. Peter mentally chooses a square and an interior point in it. Basil can draws any polygon (without self-intersections) in the plane and ask Peter whether the chosen point is inside or outside this polygon. What is the minimal number of questions suffcient to determine whether the chosen point is black or white?

2001 Czech-Polish-Slovak Match, 3

Let $ n$ and $ k$ be positive integers such that $ \frac{1}{2} n < k \leq \frac{2}{3} n.$ Find the least number $ m$ for which it is possible to place $ m$ pawns on $ m$ squares of an $ n \times n$ chessboard so that no column or row contains a block of $ k$ adjacent unoccupied squares.

2008 Postal Coaching, 4

An $8\times 8$ square board is divided into $64$ unit squares. A ’skew-diagonal’ of the board is a set of $8$ unit squares no two of which are in the same row or same column. Checkers are placed in some of the unit squares so that ’each skew-diagonal contains exactly two squares occupied by checkers’. Prove that there exist two rows or two columns which contain all the checkers.

1985 All Soviet Union Mathematical Olympiad, 397

Tags: chessboard , max
What maximal number of the men in checkers game can be put on the chess-board $8\times 8$ so, that every man can be taken by at least one other man ?

2012 QEDMO 11th, 4

The fields of an $n\times n$ chess board are colored black and white, such that in every small $2\times 2$-square both colors should be the same number. How many there possibilities are for this?

2013 QEDMO 13th or 12th, 1

A lightly damaged rook moves around on a $m \times n$ chessboard by taking turns moves to a horizontal or vertical field. For which $m$ and $n$, is it possible for him to have visited each field exactly once? The starting field counts as visited, squares skipped during a move, however, are not.

1970 Bulgaria National Olympiad, Problem 3

On a chessboard (with $64$ squares) there are situated $32$ white and $32$ black pools. We say that two pools form a mixed pair when they are with different colors and they lie on the same row or column. Find the maximum and the minimum of the mixed pairs for all possible situations of the pools. [i]K. Dochev[/i]

2019 USEMO, 3

Consider an infinite grid $\mathcal G$ of unit square cells. A [i]chessboard polygon[/i] is a simple polygon (i.e. not self-intersecting) whose sides lie along the gridlines of $\mathcal G$. Nikolai chooses a chessboard polygon $F$ and challenges you to paint some cells of $\mathcal G$ green, such that any chessboard polygon congruent to $F$ has at least $1$ green cell but at most $2020$ green cells. Can Nikolai choose $F$ to make your job impossible? [i]Nikolai Beluhov[/i]

1974 IMO Shortlist, 11

We consider the division of a chess board $8 \times 8$ in p disjoint rectangles which satisfy the conditions: [b]a)[/b] every rectangle is formed from a number of full squares (not partial) from the 64 and the number of white squares is equal to the number of black squares. [b]b)[/b] the numbers $\ a_{1}, \ldots, a_{p}$ of white squares from $p$ rectangles satisfy $a_1, , \ldots, a_p.$ Find the greatest value of $p$ for which there exists such a division and then for that value of $p,$ all the sequences $a_{1}, \ldots, a_{p}$ for which we can have such a division. [color=#008000]Moderator says: see [url]https://artofproblemsolving.com/community/c6h58591[/url][/color]

2014 Saudi Arabia Pre-TST, 1.4

Majid wants to color the cells of an $n\times n$ chessboard into white and black so that each $2\times 2$ subsquare contains two white cells and two black cells. In how many ways can Majid color this $n\times n$ chessboard?

2020 HMIC, 2

Some bishops and knights are placed on an infinite chessboard, where each square has side length $1$ unit. Suppose that the following conditions hold: [list] [*] For each bishop, there exists a knight on the same diagonal as that bishop (there may be another piece between the bishop and the knight). [*] For each knight, there exists a bishop that is exactly $\sqrt{5}$ units away from it. [*] If any piece is removed from the board, then at least one of the above conditions is no longer satisfied. [/list] If $n$ is the total number of pieces on the board, find all possible values of $n$. [i]Sheldon Kieren Tan[/i]

2022 Taiwan TST Round 2, 2

A $100 \times100$ chessboard has a non-negative real number in each of its cells. A chessboard is [b]balanced[/b] if and only if the numbers sum up to one for each column of cells as well as each row of cells. Find the largest positive real number $x$ so that, for any balanced chessboard, we can find $100$ cells of it so that these cells all have number greater or equal to $x$, and no two of these cells are on the same column or row. [i]Proposed by CSJL.[/i]