This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 54

2007 Sharygin Geometry Olympiad, 17

What triangles can be cut into three triangles having equal radii of circumcircles?

2009 Sharygin Geometry Olympiad, 2

Given a convex quadrilateral $ABCD$. Let $R_a, R_b, R_c$ and $R_d$ be the circumradii of triangles $DAB, ABC, BCD, CDA$. Prove that inequality $R_a < R_b < R_c < R_d$ is equivalent to $180^o - \angle CDB < \angle CAB < \angle CDB$ . (O.Musin)

2015 Balkan MO Shortlist, A2

Let $a,b,c$ be sidelengths of a triangle and $r,R,s$ be the inradius, the circumradius and the semiperimeter respectively of the same triangle. Prove that: $$\frac{1}{a + b} + \frac{1}{a + c} + \frac{1}{b + c} \leq \frac{r}{16Rs}+\frac{s}{16Rr} + \frac{11}{8s}$$ (Albania)

1976 Vietnam National Olympiad, 2

Find all triangles $ABC$ such that $\frac{a cos A + b cos B + c cos C}{a sin A + b sin B + c sin C} =\frac{a + b + c}{9R}$, where, as usual, $a, b, c$ are the lengths of sides $BC, CA, AB$ and $R$ is the circumradius.