Found problems: 54
1992 Swedish Mathematical Competition, 5
A triangle has sides $a, b, c$ with longest side $c$, and circumradius $R$. Show that if $a^2 + b^2 = 2cR$, then the triangle is right-angled.
2018 Yasinsky Geometry Olympiad, 4
Let $ABC$ be an acute triangle. A line, parallel to $BC$, intersects sides $AB$ and $AC$ at points $M$ and $P$, respectively. At which placement of points $M$ and $P$, is the radius of the circumcircle of the triangle $BMP$ is the smallest?
2005 Spain Mathematical Olympiad, 3
In a triangle with sides $a, b, c$ the side $a$ is the arithmetic mean of $b$ and $c$. Prove that:
a) $0^o \le A \le 60^o$.
b) The height relative to side $a$ is three times the inradius $r$.
c) The distance from the circumcenter to side $a$ is $R - r$, where $R$ is the circumradius.
2007 Abels Math Contest (Norwegian MO) Final, 2
The vertices of a convex pentagon $ABCDE$ lie on a circle $\gamma_1$.
The diagonals $AC , CE, EB, BD$, and $DA$ are tangents to another circle $\gamma_2$ with the same centre as $\gamma_1$.
(a) Show that all angles of the pentagon $ABCDE$ have the same size and that all edges of the pentagon have the same length.
(b) What is the ratio of the radii of the circles $\gamma_1$ and $\gamma_2$? (The answer should be given in terms of integers, the four basic arithmetic operations and extraction of roots only.)
1959 AMC 12/AHSME, 43
The sides of a triangle are $25,39,$ and $40$. The diameter of the circumscribed circle is:
$ \textbf{(A)}\ \frac{133}{3}\qquad\textbf{(B)}\ \frac{125}{3}\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 41\qquad\textbf{(E)}\ 40 $
1992 Romania Team Selection Test, 5
Let $O$ be the circumcenter of an acute triangle $ABC$. Suppose that the circumradius of the triangle is $R = 2p$, where $p$ is a prime number. The lines $AO,BO,CO$ meet the sides $BC,CA,AB$ at $A_1,B_1,C_1$, respectively. Given that the lengths of $OA_1,OB_1,OC_1$ are positive integers, find the side lengths of the triangle.
2013 Bulgaria National Olympiad, 5
Consider acute $\triangle ABC$ with altitudes $AA_1, BB_1$ and $CC_1$ ($A_1 \in BC,B_1 \in AC,C_1 \in AB$). A point $C' $ on the extension of $B_1A_1$ beyond $A_1$ is such that $A_1C' = B_1C_1$. Analogously, a point $B'$ on the extension of A$_1C_1$ beyond $C_1$ is such that $C_1B' = A_1B_1$ and a point $A' $ on the extension of $C_1B_1$ beyond $B_1$ is such that $B_1A' = C_1A_1$. Denote by $A'', B'', C''$ the symmetric points of $A' , B' , C'$ with respect to $BC, CA$ and $AB$ respectively. Prove that if $R, R'$ and R'' are circumradiii of $\triangle ABC, \triangle A'B'C'$ and $\triangle A''B''C''$, then $R, R'$ and $R'' $ are sidelengths of a triangle with area equals one half of the area of $\triangle ABC$.
1993 Spain Mathematical Olympiad, 3
Prove that in every triangle the diameter of the incircle is not greater than the radius of the circumcircle.
2009 Sharygin Geometry Olympiad, 2
A cyclic quadrilateral is divided into four quadrilaterals by two lines passing through its inner point. Three of these quadrilaterals are cyclic with equal circumradii. Prove that the fourth part also is cyclic quadrilateral and its circumradius is the same.
(A.Blinkov)
2011 Laurențiu Duican, 3
Prove that for a triangle $ ABC $ with $ \angle BAC \ge 90^{\circ } , $ having circumradius $ R $ and inradius $ r, $ the following inequality holds:
$$ R\sin A>2r $$
[i]Romeo Ilie[/i]
2020 Tournament Of Towns, 2
At heights $AA_0, BB_0, CC_0$ of an acute-angled non-equilateral triangle $ABC$, points $A_1, B_1, C_1$ were marked, respectively, so that $AA_1 = BB_1 = CC_1 = R$, where $R$ is the radius of the circumscribed circle of triangle $ABC$. Prove that the center of the circumscribed circle of the triangle $A_1B_1C_1$ coincides with the center of the inscribed circle of triangle $ABC$.
E. Bakaev
2015 Sharygin Geometry Olympiad, P15
The sidelengths of a triangle $ABC$ are not greater than $1$. Prove that $p(1 -2Rr)$ is not greater than $1$, where $p$ is the semiperimeter, $R$ and $r$ are the circumradius and the inradius of $ABC$.
1987 ITAMO, 3
Show how to construct (by a ruler and a compass) a right-angled triangle, given its inradius and circumradius.
2014 Dutch Mathematical Olympiad, 5
We consider the ways to divide a $1$ by $1$ square into rectangles (of which the sides are parallel to those of the square). All rectangles must have the same circumference, but not necessarily the same shape.
a) Is it possible to divide the square into 20 rectangles, each having a circumference of $2:5$?
b) Is it possible to divide the square into 30 rectangles, each having a circumference of $2$?
2010 Estonia Team Selection Test, 3
Let the angles of a triangle be $\alpha, \beta$, and $\gamma$, the perimeter $2p$ and the radius of the circumcircle $R$. Prove the inequality $\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma \ge 3 \left(\frac{9R^2}{p^2}-1\right)$. When is the equality achieved?
2005 Mexico National Olympiad, 1
Let $O$ be the center of the circumcircle of an acute triangle $ABC$, let $P$ be any point inside the segment $BC$. Suppose the circumcircle of triangle $BPO$ intersects the segment $AB$ at point $R$ and the circumcircle of triangle $COP$ intersects $CA$ at point $Q$.
(i) Consider the triangle $PQR$, show that it is similar to triangle $ABC$ and that $O$ is its orthocenter.
(ii) Show that the circumcircles of triangles $BPO$, $COP$, $PQR$ have the same radius.
2005 Thailand Mathematical Olympiad, 2
Let $\vartriangle ABC$ be an acute triangle, and let $A'$ and $B'$ be the feet of altitudes from $A$ to $BC$ and from $B$ to $CA$, respectively; the altitudes intersect at $H$. If $BH$ is equal to the circumradius of $\vartriangle ABC$, find $\frac{A'B}{AB}$ .
1983 Bundeswettbewerb Mathematik, 2
The radii of the circumcircle and the incircle of a right triangle are given. Cconstruct that triangle with compass and ruler, describe the construction and justify why it is correct.
2010 Estonia Team Selection Test, 3
Let the angles of a triangle be $\alpha, \beta$, and $\gamma$, the perimeter $2p$ and the radius of the circumcircle $R$. Prove the inequality $\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma \ge 3 \left(\frac{9R^2}{p^2}-1\right)$. When is the equality achieved?
2007 Estonia Team Selection Test, 2
Let $D$ be the foot of the altitude of triangle $ABC$ drawn from vertex $A$. Let $E$ and $F$ be points symmetric to $D$ w.r.t. lines $AB$ and $AC$, respectively. Let $R_1$ and $R_2$ be the circumradii of triangles $BDE$ and $CDF$, respectively, and let $r_1$ and $r_2$ be the inradii of the same triangles. Prove that $|S_{ABD} - S_{ACD}| > |R_1r_1 - R_2r_2|$
2007 Swedish Mathematical Competition, 3
Let $\alpha$, $\beta$, $\gamma$ be the angles of a triangle. If $a$, $b$, $c$ are the side length of the triangle and $R$ is the circumradius, show that
\[
\cot \alpha + \cot \beta +\cot \gamma =\frac{R\left(a^2+b^2+c^2\right)}{abc}
\]
1996 Israel National Olympiad, 5
Suppose that the circumradius $R$ and the inradius $r$ of a triangle $ABC$ satisfy $R = 2r$. Prove that the triangle is equilateral.
2024 Regional Olympiad of Mexico Southeast, 2
Let \(ABC\) be an acute triangle with circumradius \(R\). Let \(D\) be the midpoint of \(BC\) and \(F\) the midpoint of \(AB\). The perpendicular to \(AC\) through \(F\) and the perpendicular to \(BC\) through \(B\) intersect at \(N\). Prove that \(ND = R\).
2018 India PRMO, 7
A point $P$ in the interior of a regular hexagon is at distances $8,8,16$ units from three consecutive vertices of the hexagon, respectively. If $r$ is radius of the circumscribed circle of the hexagon, what is the integer closest to $r$?
2017 Oral Moscow Geometry Olympiad, 4
We consider triangles $ABC$, in which the point $M$ lies on the side $AB$, $AM = a$, $BM = b$, $CM = c$ ($c <a, c <b$). Find the smallest radius of the circumcircle of such triangles.