Found problems: 254
2005 Bosnia and Herzegovina Team Selection Test, 4
On the line which contains diameter $PQ$ of circle $k(S,r)$, point $A$ is chosen outside the circle such that tangent $t$ from point $A$ touches the circle in point $T$. Tangents on circle $k$ in points $P$ and $Q$ are $p$ and $q$, respectively. If $PT \cap q={N}$ and $QT \cap p={M}$, prove that points $A$, $M$ and $N$ are collinear.
1963 Poland - Second Round, 4
In the triangle $ ABC $, the bisectors of the internal and external angles are drawn at the vertices $ A $ and $ B $. Prove that the orthogonal projections of the point $ C $ on these bisectors lie on one straight line.
2021 Regional Olympiad of Mexico Center Zone, 3
Let $W,X,Y$ and $Z$ be points on a circumference $\omega$ with center $O$, in that order, such that $WY$ is perpendicular to $XZ$; $T$ is their intersection. $ABCD$ is the convex quadrilateral such that $W,X,Y$ and $Z$ are the tangency points of $\omega$ with segments $AB,BC,CD$ and $DA$ respectively. The perpendicular lines to $OA$ and $OB$ through $A$ and $B$, respectively, intersect at $P$; the perpendicular lines to $OB$ and $OC$ through $B$ and $C$, respectively, intersect at $Q$, and the perpendicular lines to $OC$ and $OD$ through $C$ and $D$, respectively, intersect at $R$. $O_1$ is the circumcenter of triangle $PQR$. Prove that $T,O$ and $O_1$ are collinear.
[i]Proposed by CDMX[/i]
2012 Junior Balkan Team Selection Tests - Romania, 4
The quadrilateral $ABCD$ is inscribed in a circle centered at $O$, and $\{P\} = AC \cap BD, \{Q\} = AB \cap CD$. Let $R$ be the second intersection point of the circumcircles of the triangles $ABP$ and $CDP$.
a) Prove that the points $P, Q$, and $R$ are collinear.
b) If $U$ and $V$ are the circumcenters of the triangles $ABP$, and $CDP$, respectively, prove that the points $U, R, O, V$ are concyclic.