This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 254

2022 Federal Competition For Advanced Students, P2, 5

Let $ABC$ be an isosceles triangle with base $AB$. We choose a point $P$ inside the triangle on altitude through $C$. The circle with diameter $CP$ intersects the straight line through $B$ and $P$ again at the point $D_P$ and the Straight through $A$ and $C$ one more time at point $E_P$. Prove that there is a point $F$ such that for any choice of $P$ the points $D_P , E_P$ and $F$ lie on a straight line. [i](Walther Janous)[/i]

2008 Oral Moscow Geometry Olympiad, 6

Given a triangle $ABC$ and points $P$ and $Q$. It is known that the triangles formed by the projections $P$ and $Q$ on the sides of $ABC$ are similar (vertices lying on the same sides of the original triangle correspond to each other). Prove that line $PQ$ passes through the center of the circumscribed circle of triangle $ABC$. (A. Zaslavsky)

2019 New Zealand MO, 7

Let $ABCDEF$ be a convex hexagon containing a point $P$ in its interior such that $PABC$ and $PDEF$ are congruent rectangles with $PA = BC = P D = EF$ (and $AB = PC = DE = PF$). Let $\ell$ be the line through the midpoint of $AF$ and the circumcentre of $PCD$. Prove that $\ell$ passes through $P$.

Kharkiv City MO Seniors - geometry, 2021.10.5

The inscribed circle $\Omega$ of triangle $ABC$ touches the sides $AB$ and $AC$ at points $K$ and $ L$, respectively. The line $BL$ intersects the circle $\Omega$ for the second time at the point $M$. The circle $\omega$ passes through the point $M$ and is tangent to the lines $AB$ and $BC$ at the points $P$ and $Q$, respectively. Let $N$ be the second intersection point of circles $\omega$ and $\Omega$, which is different from $M$. Prove that if $KM \parallel AC$ then the points $P, N$ and $L$ lie on one line.