Found problems: 1704
2013 Tournament of Towns, 5
A $101$-gon is inscribed in a circle. From each vertex of this polygon a perpendicular is dropped to the opposite side or its extension. Prove that at least one perpendicular drops to the side.
1996 All-Russian Olympiad Regional Round, 10.8
There are $1996$ points marked on a straight line at regular intervals. Petya colors half of them red and the rest blue. Then Vasya divides them into pairs ''red'' - ''blue'' so that the sum distances between points in pairs was maximum. Prove that this maximum does not depend on what coloring Petya made.
2003 Portugal MO, 3
Raquel painted $650$ points in a circle with a radius of $16$ cm. Shows that there is a circular crown with $2$ cm of inner radius and $3$ cm of outer radius that contain at least $10$ of these points.
2023 ELMO Shortlist, C4
Let \(n\) be a positive integer and consider an \(n\times n\) square grid. For \(1\le k\le n\), a [i]python[/i] of length \(k\) is a snake that occupies \(k\) consecutive cells in a single row, and no other cells. Similarly, an [i]anaconda[/i] of length \(k\) is a snake that occupies \(k\) consecutive cells in a single column, and no other cells.
The grid contains at least one python or anaconda, and it satisfies the following properties: [list] [*]No cell is occupied by multiple snakes. [*]If a cell in the grid is immediately to the left or immediately to the right of a python, then that cell must be occupied by an anaconda. [*]If a cell in the grid is immediately to above or immediately below an anaconda, then that cell must be occupied by a python. [/list]
Prove that the sum of the squares of the lengths of the snakes is at least \(n^2\).
[i]Proposed by Linus Tang[/i]
2012 CHMMC Spring, 3
Three different faces of a regular dodecahedron are selected at random and painted. What is the probability that there is at least one pair of painted faces that share an edge?
2017 Argentina National Olympiad, 6
Draw all the diagonals of a convex polygon of $10$ sides. They divide their angles into $80$ parts. It is known that at least $59$ of those parts are equal. Determine the largest number of distinct values among the $ 80$ angles of division and how many times each of those values occurs.
2018 Romania Team Selection Tests, 3
Consider a 4-point configuration in the plane such that every 3 points can be covered by a strip of a unit width. Prove that:
1) the four points can be covered by a strip of length at most $\sqrt2$ and
2)if no strip of length less that $\sqrt2$ covers all the four points, then the points are vertices of a square of length $\sqrt2$
2022 Durer Math Competition Finals, 5
Annie drew a rectangle and partitioned it into $n$ rows and $k$ columns with horizontal and vertical lines. Annie knows the area of the resulting $n \cdot k$ little rectangles while Benny does not. Annie reveals the area of some of these small rectangles to Benny. Given $n$ and $k$ at least how many of the small rectangle’s areas did Annie have to reveal, if from the given information Benny can determine the areas of all the $n \cdot k$ little rectangles?
For example in the case $n = 3$ and $k = 4$ revealing the areas of the $10$ small rectangles if enough information to find the areas of the remaining two little rectangles.
[img]https://cdn.artofproblemsolving.com/attachments/b/1/c4b6e0ab6ba50068ced09d2a6fe51e24dd096a.png[/img]
2019 Iran Team Selection Test, 5
Let $P$ be a simple polygon completely in $C$, a circle with radius $1$, such that $P$ does not pass through the center of $C$. The perimeter of $P$ is $36$. Prove that there is a radius of $C$ that intersects $P$ at least $6$ times, or there is a circle which is concentric with $C$ and have at least $6$ common points with $P$.
[i]Proposed by Seyed Reza Hosseini[/i]
2019 Middle European Mathematical Olympiad, 2
Let $n\geq 3$ be an integer. We say that a vertex $A_i (1\leq i\leq n)$ of a convex polygon $A_1A_2 \dots A_n$ is [i]Bohemian[/i] if its reflection with respect to the midpoint of $A_{i-1}A_{i+1}$ (with $A_0=A_n$ and $A_1=A_{n+1}$) lies inside or on the boundary of the polygon $A_1A_2\dots A_n$. Determine the smallest possible number of Bohemian vertices a convex $n$-gon can have (depending on $n$).
[i]Proposed by Dominik Burek, Poland [/i]
1998 Tournament Of Towns, 1
Pinocchio claims that he can take some non-right-angled triangles , all of which are similar to one another and some of which may be congruent to one another, and put them together to form a rectangle. Is Pinocchio lying?
(A Fedotov)
2015 Swedish Mathematical Competition, 6
Axel and Berta play the following games: On a board are a number of positive integers. One move consists of a player exchanging a number $x$ on the board for two positive integers y and $z$ (not necessarily different), such that $y + z = x$. The game ends when the numbers on the board are relatively coprime in pairs. The player who made the last move has then lost the game. At the beginning of the game, only the number $2015$ is on the board. The two players make do their moves in turn and Berta begins. One of the players has a winning strategy. Who, and why?
2012 Junior Balkan Team Selection Tests - Romania, 2
Let us choose arbitrarily $n$ vertices of a regular $2n$-gon and color them red. The remaining vertices are colored blue. We arrange all red-red distances into a nondecreasing sequence and do the same with the blue-blue distances. Prove that the two sequences thus obtained are identical.
1988 Tournament Of Towns, (197) 4
A page of an exercise book is painted with $23$ colours, arranged in squares. A pair of colours is called [i]good [/i] if there are neighbouring squares painted with these colours. What is the minimum number of good pairs?
2016 Kyiv Mathematical Festival, P2
1) Is it possible to place five circles on the plane in such way that each circle has exactly 5 common points with other circles?
2) Is it possible to place five circles on the plane in such way that each circle has exactly 6 common points with other circles?
3) Is it possible to place five circles on the plane in such way that each circle has exactly 7 common points with other circles?
1978 Chisinau City MO, 163
On the plane $n$ points are selected that do not belong to one straight line. Prove that the shortest closed path passing through all these points is a non-self-intersecting polygon.
1981 Brazil National Olympiad, 4
A graph has $100$ points. Given any four points, there is one joined to the other three. Show that one point must be joined to all $99$ other points. What is the smallest number possible of such points (that are joined to all the others)?
2023 pOMA, 5
Let $n\ge 2$ be a positive integer, and let $P_1P_2\dots P_{2n}$ be a polygon with $2n$ sides such that no two sides are parallel. Denote $P_{2n+1}=P_1$. For some point $P$ and integer $i\in\{1,2,\ldots,2n\}$, we say that $i$ is a $P$-good index if $PP_{i}>PP_{i+1}$, and that $i$ is a $P$-bad index if $PP_{i}<PP_{i+1}$.
Prove that there's a point $P$ such that the number of $P$-good indices is the same as the number of $P$-bad indices.
KoMaL A Problems 2022/2023, A. 850
Prove that there exists a positive real number $N$ such that for arbitrary real numbers $a,b>N$ it is possible to cover the perimeter of a rectangle with side lengths $a$ and $b$ using non-overlapping unit disks (the unit disks can be tangent to each other).
[i]Submitted by Benedek Váli, Budapest[/i]
1996 All-Russian Olympiad Regional Round, 8.6
Spot spotlight located at vertex $B$ of an equilateral triangle $ABC$, illuminates angle $\alpha$. Find all such values of $\alpha$, not exceeding $60^o$, which at any position of the spotlight, when the illuminated corner is entirely located inside the angle $ABC$, from the illuminated and two unlit segments of side $AC$ can be formed into a triangle.
2014 Vietnam Team Selection Test, 6
$m,n,p$ are positive integers which do not simultaneously equal to zero. $3$D Cartesian space is divided into unit cubes by planes each perpendicular to one of $3$ axes and cutting corresponding axis at integer coordinates. Each unit cube is filled with an integer from $1$ to $60$. A filling of integers is called [i]Dien Bien[/i] if, for each rectangular box of size $\{2m+1,2n+1,2p+1\}$, the number in the unit cube which has common centre with the rectangular box is the average of the $8$ numbers of the $8$ unit cubes at the $8$ corners of that rectangular box. How many [i]Dien Bien[/i] fillings are there?
Two fillings are the same if one filling can be transformed to the other filling via a translation.
[hide]translation from [url=http://artofproblemsolving.com/community/c6h592875p3515526]here[/url][/hide]
1992 IMO, 2
Let $\,S\,$ be a finite set of points in three-dimensional space. Let $\,S_{x},\,S_{y},\,S_{z}\,$ be the sets consisting of the orthogonal projections of the points of $\,S\,$ onto the $yz$-plane, $zx$-plane, $xy$-plane, respectively. Prove that \[ \vert S\vert^{2}\leq \vert S_{x} \vert \cdot \vert S_{y} \vert \cdot \vert S_{z} \vert, \] where $\vert A \vert$ denotes the number of elements in the finite set $A$.
[hide="Note"] Note: The orthogonal projection of a point onto a plane is the foot of the perpendicular from that point to the plane. [/hide]
1983 IMO Longlists, 5
Consider the set $\mathbb Q^2$ of points in $\mathbb R^2$, both of whose coordinates are rational.
[b](a)[/b] Prove that the union of segments with vertices from $\mathbb Q^2$ is the entire set $\mathbb R^2$.
[b](b)[/b] Is the convex hull of $\mathbb Q^2$ (i.e., the smallest convex set in $\mathbb R^2$ that contains $\mathbb Q^2$) equal to $\mathbb R^2$ ?
1977 All Soviet Union Mathematical Olympiad, 247
Given a square $100\times 100$ on the sheet of cross-lined paper. There are several broken lines drawn inside the square. Their links consist of the small squares sides. They are neither pairwise- nor self-intersecting (have no common points). Their ends are on the big square boarder, and all the other vertices are in the big square interior. Prove that there exists (in addition to four big square angles) a node (corresponding to the cross-lining family, inside the big square or on its side) that does not belong to any broken line.
1993 IMO Shortlist, 2
Show that there exists a finite set $A \subset \mathbb{R}^2$ such that for every $X \in A$ there are points $Y_1, Y_2, \ldots, Y_{1993}$ in $A$ such that the distance between $X$ and $Y_i$ is equal to 1, for every $i.$