Found problems: 412
2006 Korea Junior Math Olympiad, 3
In a circle $O$, there are six points, $A,B,C,D,E, F$ in a counterclockwise order. $BD \perp CF$, and $CF,BE,AD$ are concurrent. Let the perpendicular from $B$ to $AC$ be $M$, and the perpendicular from $D$ to $CE$ be $N$. Prove that $AE // MN$.
2014 Romania National Olympiad, 4
Outside the square $ABCD$ is constructed the right isosceles triangle $ABD$ with hypotenuse $[AB]$. Let $N$ be the midpoint of the side $[AD]$ and ${M} = CE \cap AB$, ${P} = CN \cap AB$ , ${F} = PE \cap MN$. On the line $FP$ the point $Q$ is considered such that the $[CE$ is the bisector of the angle $QCB$. Prove that $MQ \perp CF$.
2006 Kazakhstan National Olympiad, 6
In the tetrahedron $ ABCD $ from the vertex $ A $, the perpendiculars $ AB '$, $ AC' $ are drawn, $ AD '$ on planes dividing dihedral angles at edges $ CD $, $ BD $, $ BC $ in half. Prove that the plane $ (B'C'D ') $ is parallel to the plane $ (BCD) $.
2016 BAMO, 4
In an acute triangle $ABC$ let $K,L,$ and $M$ be the midpoints of sides $AB,BC,$ and $CA,$ respectively. From each of $K,L,$ and $M$ drop two perpendiculars to the other two sides of the triangle; e.g., drop perpendiculars from $K$ to sides $BC$ and $CA,$ etc. The resulting $6$ perpendiculars intersect at points $Q,S,$ and $T$ as in the figure to form a hexagon $KQLSMT$ inside triangle $ABC.$ Prove that the area of this hexagon $KQLSMT$ is half of the area of the original triangle $ABC.$
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra; diagram by adihaya*/
import graph; size(10cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = 11.888712276357234, xmax = 17.841346447833423, ymin = 10.61620970860601, ymax = 15.470685507068502; /* image dimensions */
pen zzttqq = rgb(0.6,0.2,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.);
pair A = (12.488234161849352,12.833838721895551), B = (16.50823416184936,15.093838721895553), C = (16.28823416184936,11.353838721895551), K = (14.498234161849355,13.963838721895552), L = (16.39823416184936,13.223838721895552), M = (14.388234161849356,12.093838721895551), D = (13.615830174638527,13.467760858438725), F = (15.75135711740064,11.562938202365055), G = (15.625830174638523,14.597760858438724), H = (16.435061748056253,13.849907687412797), T = (14.02296781802369,12.74356027153236), Q = (16.032967818023693,13.873560271532357), O = (16.325061748056253,11.979907687412794);
draw(A--B--C--cycle, zzttqq);
draw((13.426050287639166,13.361068683160477)--(13.532742462917415,13.171288796161116)--(13.722522349916774,13.277980971439364)--D--cycle, qqwuqq);
draw((14.054227993863618,12.223925334689998)--(14.133240861538676,12.426796211152979)--(13.930369985075695,12.505809078828037)--(13.851357117400637,12.302938202365056)--cycle, qqwuqq);
draw((16.337846386707046,12.19724654447628)--(16.12050752964356,12.210031183127075)--(16.107722890992765,11.992692326063588)--O--cycle, qqwuqq);
draw((15.830369985075697,11.765809078828037)--(15.627499108612716,11.844821946503092)--(15.54848624093766,11.641951070040111)--F--cycle, qqwuqq);
draw((15.436050287639164,14.491068683160476)--(15.542742462917412,14.301288796161115)--(15.73252234991677,14.407980971439365)--G--cycle, qqwuqq);
draw((16.217722890992764,13.86269232606359)--(16.20493825234197,13.645353469000101)--(16.42227710940546,13.63256883034931)--H--cycle, qqwuqq);
Label laxis; laxis.p = fontsize(10);
xaxis(xmin, xmax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true);
yaxis(ymin, ymax, Ticks(laxis, Step = 1., Size = 2, NoZero),EndArrow(6), above = true); /* draws axes; NoZero hides '0' label */
/* draw figures */
draw(A--B, zzttqq);
draw(B--C, zzttqq);
draw(C--A, zzttqq);
draw(M--D);
draw(K--(13.851357117400637,12.302938202365056));
draw(F--L);
draw(L--G);
draw(K--H);
draw(M--O);
/* dots and labels */
dot(A,dotstyle);
label("$A$", (12.52502834296331,12.93568440300881), NE * labelscalefactor);
dot(B,dotstyle);
label("$B$", (16.548187989892043,15.193580123223922), NE * labelscalefactor);
dot(C,dotstyle);
label("$C$", (16.332661580235147,11.457789022504372), NE * labelscalefactor);
dot(K,linewidth(3.pt) + dotstyle);
label("$K$", (14.536608166427676,14.02357961365791), NE * labelscalefactor);
dot(L,linewidth(3.pt) + dotstyle);
label("$L$", (16.43529320388129,13.28463192340569), NE * labelscalefactor);
dot(M,linewidth(3.pt) + dotstyle);
label("$M$", (14.433976542781535,12.155684063298134), NE * labelscalefactor);
dot(D,linewidth(3.pt) + dotstyle);
dot((13.851357117400637,12.302938202365056),linewidth(3.pt) + dotstyle);
dot(F,linewidth(3.pt) + dotstyle);
dot(G,linewidth(3.pt) + dotstyle);
dot(H,linewidth(3.pt) + dotstyle);
dot((15.922967818023695,12.003560271532354),linewidth(3.pt) + dotstyle);
label("$S$", (15.96318773510904,12.063315602016607), NE * labelscalefactor);
dot(T,linewidth(3.pt) + dotstyle);
label("$T$", (14.064502697655428,12.802263292268826), NE * labelscalefactor);
dot(Q,linewidth(3.pt) + dotstyle);
label("$Q$", (16.076082521119794,13.931211152376383), NE * labelscalefactor);
dot(O,linewidth(3.pt) + dotstyle);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
1954 Moscow Mathematical Olympiad, 265
From an arbitrary point $O$ inside a convex $n$-gon, perpendiculars are drawn on (extensions of the) sides of the $n$-gon. Along each perpendicular a vector is constructed, starting from $O$, directed towards the side onto which the perpendicular is drawn, and of length equal to half the length of the corresponding side. Find the sum of these vectors.
2015 Belarus Team Selection Test, 1
A circle intersects a parabola at four distinct points. Let $M$ and $N$ be the midpoints of the arcs of the circle which are outside the parabola. Prove that the line $MN$ is perpendicular to the axis of the parabola.
I. Voronovich
2015 Dutch IMO TST, 4
Let $\Gamma_1$ and $\Gamma_2$ be circles - with respective centres $O_1$ and $O_2$ - that intersect each other in $A$ and $B$. The line $O_1A$ intersects $\Gamma_2$ in $A$ and $C$ and the line $O_2A$ intersects $\Gamma_1$ in $A$ and $D$. The line through $B$ parallel to $AD$ intersects $\Gamma_1$ in $B$ and $E$. Suppose that $O_1A$ is parallel to $DE$. Show that $CD$ is perpendicular to $O_2C$.
2021 Bangladeshi National Mathematical Olympiad, 4
$ABCD$ is an isosceles trapezium such that $AD=BC$, $AB=5$ and $CD=10$. A point $E$ on the plane is such that $AE\perp{EC}$ and $BC=EC$. The length of $AE$ can be expressed as $a\sqrt{b}$, where $a$ and $b$ are integers and $b$ is not divisible by any square number other than $1$. Find the value of $(a+b)$.
2010 Dutch IMO TST, 1
Let $ABC$ be an acute triangle such that $\angle BAC = 45^o$. Let $D$ a point on $AB$ such that $CD \perp AB$. Let $P$ be an internal point of the segment $CD$. Prove that $AP\perp BC$ if and only if $|AP| = |BC|$.
1981 All Soviet Union Mathematical Olympiad, 305
Given points $A,B,M,N$ on the circumference. Two chords $[MA_1]$ and $[MA_2]$ are orthogonal to lines $(NA)$ and $(NB)$ respectively. Prove that $(AA_1)$ and $(BB_1)$ lines are parallel.
2023 Czech-Polish-Slovak Junior Match, 1
Given a triangle $ABC$, $BC = 2 \cdot AC$. Point $M$ is the midpoint of side $ BC$ and point $D$ lies on $AB$, with $AD = 2 \cdot BD$. Prove that the lines $AM$ and $MD$ are perpendicular.
2009 Moldova National Olympiad, 10.4
Let the isosceles triangle $ABC$ with $| AB | = | AC |$. The point $M$ is the midpoint of the base $[BC]$, the point $N$ is the orthogonal projection of the point $M$ on the line $AC$, and the point $P$ is located on the segment $(MC)$ such that $| MP | = | P C | \sin^2 C$. Prove that the lines $AP$ and $BN$ are perpendicular.
2009 Oral Moscow Geometry Olympiad, 3
Altitudes $AA_1$ and $BB_1$ are drawn in the acute-angled triangle $ABC$. Prove that the perpendicular drawn from the touchpoint of the inscribed circle with the side $BC$, on the line $AC$ passes through the center of the inscribed circle of the triangle $A_1CB_1$.
(V. Protasov)
2018 District Olympiad, 3
Let $ABCD$ be a rectangle and the arbitrary points $E\in (CD)$ and $F \in (AD)$. The perpendicular from point $E$ on the line $FB$ intersects the line $BC$ at point $P$ and the perpendicular from point $F$ on the line $EB$ intersects the line $AB$ at point $Q$. Prove that the points $P, D$ and $Q$ are collinear.
2017 Saudi Arabia JBMO TST, 3
Let $BC$ be a chord of a circle $(O)$ such that $BC$ is not a diameter. Let $AE$ be the diameter perpendicular to $BC$ such that $A$ belongs to the larger arc $BC$ of $(O)$. Let $D$ be a point on the larger arc $BC$ of $(O)$ which is different from $A$. Suppose that $AD$ intersects $BC$ at $S$ and $DE$ intersects $BC$ at $T$. Let $F$ be the midpoint of $ST$ and $I$ be the second intersection point of the circle $(ODF)$ with the line $BC$.
1. Let the line passing through $I$ and parallel to $OD$ intersect $AD$ and $DE$ at $M$ and $N$, respectively. Find the maximum value of the area of the triangle $MDN$ when $D$ moves on the larger arc $BC$ of $(O)$ (such that $D \ne A$).
2. Prove that the perpendicular from $D$ to $ST$ passes through the midpoint of $MN$
2014 Czech-Polish-Slovak Match, 3
Given is a convex $ABCD$, which is $ |\angle ABC| = |\angle ADC|= 135^\circ $. On the $AB, AD$ are also selected points $M, N$ such that $ |\angle MCD| = |\angle NCB| = 90^ \circ $. The circumcircles of the triangles $AMN$ and $ABD$ intersect for the second time at point $K \ne A$. Prove that lines $AK $ and $KC$ are perpendicular.
(Irán)
Kharkiv City MO Seniors - geometry, 2014.11.5
In the convex quadrilateral of the $ABCD$, the diagonals of $AC$ and $BD$ are mutually perpendicular and intersect at point $E$. On the side of $AD$, a point $P$ is chosen such that $PE = EC$. The circumscribed circle of the triangle $BCD$ intersects the segment $AD$ at the point $Q$. The circle passing through point $A$ and tangent to the line $EP$ at point $P$ intersects the segment $AC$ at point $R$. It turns out that points $B, Q, R$ are collinear. Prove that $\angle BCD = 90^o$.
2016 Greece Junior Math Olympiad, 3
Let $ABCD$ be a trapezoid ($AD//BC$) with $\angle A=\angle B= 90^o$ and $AD<BC$. Let $E$ be the intersection point of the non parallel sides $AB$ and $CD$, $Z$ be the symmetric point of $A$ wrt line $BC$ and $M$ be the midpoint of $EZ$. If it is given than line $CM$ is perpendicular on line $DZ$, then prove that line $ZC$ is perpendicular on line $EC$.
2021-IMOC qualification, G2
Given a triangle $ABC$, $D$ is the reflection from the perpendicular foot from $A$ to $BC$ through the midpoint of $BC$. $E$ is the reflection from the perpendicular foot from $B$ to $CA$ through the midpoint of $CA$. $F$ is the reflection from the perpendicular foot from $C$ to $AB$ through the midpoint of $AB$. Prove: $DE \perp AC$ if and only if $DF \perp AB$
2012 Greece JBMO TST, 3
Let $ABC$ be an acute triangle with $AB<AC<BC$, inscribed in circle $c(O,R)$ (with center $O$ and radius $R$). Let $O_1$ be the symmetric point of $O$ wrt $AC$. Circle $c_1(O_1,R)$ intersects $BC$ at $Z$. If the extension of the altitude $AD$ intersects the cicrumscribed circle $c(O,R)$ at point $E$, prove that $EC$ is perpendicular on $AZ$.
2000 Argentina National Olympiad, 2
Given a triangle $ABC$ with side $AB$ greater than $BC$, let $M$ be the midpoint of $AC$ and $L$ be the point at which the bisector of angle $\angle B$ intersects side $AC$. The line parallel to $AB$, which intersects the bisector $BL$ at $D$, is drawn by $M$, and the line parallel to the side $BC$ that intersects the median $BM$ at $E$ is drawn by $L$. Show that $ED$ is perpendicular to $BL$.
May Olympiad L2 - geometry, 2015.3
Let $ABCDEFGHI$ be a regular polygon of $9$ sides. The segments $AE$ and $DF$ intersect at $P$. Prove that $PG$ and $AF$ are perpendicular.
the 2nd XMO, 1
As shown in the figure, $BQ$ is a diameter of the circumcircle of $ABC$, and $D$ is the midpoint of arc $BC$ (excluding point $A$) . The bisector of the exterior angle of $\angle BAC$ intersects and the extension of $BC$ at point $E$. The ray $EQ$ intersects $\odot (ABC)$ at point $P$. Point $S$ lies on $PQ$ so that $SA = SP$. Point $T$ lies on $BC$ such that $TB = TD$. Prove that $TS \perp SE$.
[img]https://cdn.artofproblemsolving.com/attachments/c/4/01460565e70b32b29cddb65d92e041bea40b25.png[/img]
2015 Grand Duchy of Lithuania, 2
Let $\omega_1$ and $\omega_2$ be two circles , with respective centres $O_1$ and $O_2$ , that intersect each other in $A$ and $B$. The line $O_1A$ intersects $\omega_2$ in $A$ and $C$ and the line $O_2A$ inetersects $\omega_1$ in $A$ and $D$. The line through $B$ parallel to $AD$ intersects $\omega_1$ in $B$ and $E$. Suppose that $O_1A$ is parallel to $DE$. Show that $CD$ is perpendicular to $O_2C$.
1997 Czech and Slovak Match, 1
Points $K$ and $L$ are chosen on the sides $AB$ and $AC$ of an equilateral triangle $ABC$ such that $BK = AL$. Segments $BL$ and $CK$ intersect at $P$. Determine the ratio $\frac{AK}{KB}$ for which the segments $AP$ and $CK$ are perpendicular.