This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2021 Irish Math Olympiad, 7

Each square of an $n \times n$ grid is coloured either blue or red, where $n$ is a positive integer. There are $k$ blue cells in the grid. Pat adds the sum of the squares of the numbers of blue cells in each row to the sum of the squares of the numbers of blue cells in each column to form $S_B$. He then performs the same calculation on the red cells to compute $S_R$. If $S_B- S_R = 50$, determine (with proof) all possible values of $k$.

2004 May Olympiad, 5

On a $ 9\times 9$ board, divided into $1\times 1$ squares, pieces of the form Each piece covers exactly $3$ squares. (a) Starting from the empty board, what is the maximum number of pieces that can be placed? (b) Starting from the board with $3$ pieces already placed as shown in the diagram below, what is the maximum number of pieces that can be placed? [img]https://cdn.artofproblemsolving.com/attachments/d/4/3bd010828accb2d1811d49eb17fa69662ff60d.gif[/img]

2022 Canada National Olympiad, 4

Call a set of $n$ lines [i]good[/i] if no $3$ lines are concurrent. These $n$ lines divide the Euclidean plane into regions (possible unbounded). A [i]coloring[/i] is an assignment of two colors to each region, one from the set $\{A_1, A_2\}$ and the other from $\{B_1, B_2, B_3\}$, such that no two adjacent regions (adjacent meaning sharing an edge) have the same $A_i$ color or the same $B_i$ color, and there is a region colored $A_i, B_j$ for any combination of $A_i, B_j$. A number $n$ is [i]colourable[/i] if there is a coloring for any set of $n$ good lines. Find all colourable $n$.

2023 Iranian Geometry Olympiad, 3

Let $ABCD$ be a square with side length $1$. How many points $P$ inside the square (not on its sides) have the property that the square can be cut into $10$ triangles of equal area such that all of them have $P$ as a vertex? [i]Proposed by Josef Tkadlec - Czech Republic[/i]

2016 IMAR Test, 3

Fix an integer $n \ge 2$, let $Q_n$ be the graph consisting of all vertices and all edges of an $n$-cube, and let $T$ be a spanning tree in $Q_n$. Show that $Q_n$ has an edge whose adjunction to $T$ produces a simple cycle of length at least $2n$.

1969 IMO Longlists, 60

$(SWE 3)$ Find the natural number $n$ with the following properties: $(1)$ Let $S = \{P_1, P_2, \cdots\}$ be an arbitrary finite set of points in the plane, and $r_j$ the distance from $P_j$ to the origin $O.$ We assign to each $P_j$ the closed disk $D_j$ with center $P_j$ and radius $r_j$. Then some $n$ of these disks contain all points of $S.$ $(2)$ $n$ is the smallest integer with the above property.

1996 Chile National Olympiad, 3

Let $n> 2$ be a natural. Given $2n$ points in the plane, no $3$ are collinear. What is the maximum number of lines that can be drawn between them, without forming a triangle? [hide=original wording]Sea n > 2 un natural. Dados 2n puntos en el plano, tres a tres no colineales, Cual es el numero maximo de trazos que pueden dibujarse entre ellos, sin formar un triangulo?[/hide]

1989 Putnam, A5

Show that we can find $\alpha>0$ such that, given any point $P$ inside a regular $2n+1$-gon which is inscribed in a circle radius $1$, we can find two vertices of the polygon whose distance from $P$ differ by less than $\frac1n-\frac\alpha{n^3}$.

2002 Portugal MO, 3

Daniel painted a rectangular painting measuring $2$ meters by $4$ meters with four colors. Knowing that he used more than two colors to paint the four corners of the painting, prove that he painted of the same color two points that are at least $\sqrt5$ meters

2021 Denmark MO - Mohr Contest, 1

Georg has a set of sticks. From these sticks he must create a closed figure with the property that each stick makes right angles with its neighbouring sticks. All the sticks must be used. If the sticks have the lengths $1, 1, 2, 2, 2, 3, 3$ and $4$, the figure might for example look like this: [img]https://cdn.artofproblemsolving.com/attachments/9/7/c16a3143a52ec6f442208c63b41f2df1ae735c.png[/img] (a) Prove that he can create such a figure if the sticks have the lengths $1, 1, 1, 2, 2, 3, 4$ and $4$. (b) Prove that it cannot be done if the sticks have the lengths $1, 2, 2, 3, 3, 3, 4, 4$ and $4$. (c) Determine whether it is doable if the sticks have the lengths $1, 2, 2, 2, 3, 3, 3, 4, 4$ and $5$.

2015 Estonia Team Selection Test, 6

In any rectangular game board with black and white squares, call a row $X$ a mix of rows $Y$ and $Z$ whenever each cell in row $X$ has the same colour as either the cell of the same column in row $Y$ or the cell of the same column in row $Z$. Let a natural number $m \ge 3$ be given. In some rectangular board, black and white squares lie in such a way that all the following conditions hold. 1) Among every three rows of the board, one is a mix of two others. 2) For every two rows of the board, their corresponding cells in at least one column have different colours. 3) For every two rows of the board, their corresponding cells in at least one column have equal colours. 4) It is impossible to add a new row with each cell either black or white to the board in a way leaving both conditions 1) and 2) still in force Find all possibilities of what can be the number of rows of the board.

1985 IMO Shortlist, 8

Let $A$ be a set of $n$ points in the space. From the family of all segments with endpoints in $A$, $q$ segments have been selected and colored yellow. Suppose that all yellow segments are of different length. Prove that there exists a polygonal line composed of $m$ yellow segments, where $m \geq \frac{2q}{n}$, arranged in order of increasing length.

2013 Irish Math Olympiad, 7

Consider the collection of different squares which may be formed by sets of four points chosen from the $12$ labelled points in the diagram on the right. For each possible area such a square may have, determine the number of squares which have this area. Make sure to explain why your list is complete. [img]https://cdn.artofproblemsolving.com/attachments/b/a/faf00c2faa7b949ab2894942f8bd99505543e8.png[/img]

1994 Tournament Of Towns, (409) 7

In a $10$ by $10$ square grid (which we call “the bay”) you are requested to place ten “ships”: one $1$ by $4$ ship, two $1$ by $3$ ships, three $1$ by $2$ ships and four $1$ by $1$ ships. The ships may not have common points (even corners) but may touch the “shore” of the bay. Prove that (a) by placing the ships one after the other arbitrarily but in the order indicated above, it is always possible to complete the process; (b) by placing the ships in reverse order (beginning with the smaller ones), it is possible to reach a situation where the next ship cannot be placed (give an example). (KN Ignatjev)

1956 Moscow Mathematical Olympiad, 340

a) * In a rectangle of area $5$ sq. units, $9$ rectangles of area $1$ are arranged. Prove that the area of the overlap of some two of these rectangles is $\ge 1/9$ b) In a rectangle of area $5$ sq. units, lie $9$ arbitrary polygons each of area $1$. Prove that the area of the overlap of some two of these rectangles is $\ge 1/9$

2012 China Northern MO, 4

There are $n$ ($n \ge 4$) straight lines on the plane. For two straight lines $a$ and $b$, if there are at least two straight lines among the remaining $n-2$ lines that intersect both straight lines $a$ and $b$, then $a$ and $b$ are called a [i]congruent [/i] pair of staight lines, otherwise it is called a [i]separated[/i] pair of straight lines. If the number of [i]congruent [/i] pairs of straight line among $n$ straight lines is $2012$ more than the number of [i]separated[/i] pairs of straight line , find the smallest possible value of $n$ (the order of the two straight lines in a pair is not counted).

2000 Tournament Of Towns, 2

What is the largest integer $n$ such that one can find $n$ points on the surface of a cube, not all lying on one face and being the vertices of a regular $n$-gon? (A Shapovalov)

2015 Sharygin Geometry Olympiad, P22

The faces of an icosahedron are painted into $5$ colors in such a way that two faces painted into the same color have no common points, even a vertices. Prove that for any point lying inside the icosahedron the sums of the distances from this point to the red faces and the blue faces are equal.

1967 All Soviet Union Mathematical Olympiad, 087

a) Can you pose the numbers $0,1,...,9$ on the circumference in such a way, that the difference between every two neighbours would be either $3$ or $4$ or $5$? b) The same question, but about the numbers $0,1,...,13$.

Brazil L2 Finals (OBM) - geometry, 2006.2

Among the $5$-sided polygons, as many vertices as possible collinear , that is, belonging to a single line, is three, as shown below. What is the largest number of collinear vertices a $12$-sided polygon can have? [img]https://cdn.artofproblemsolving.com/attachments/1/1/53d419efa4fc4110730a857ae6988fc923eb13.png[/img] Attention: In addition to drawing a $12$-sided polygon with the maximum number of vertices collinear , remember to show that there is no other $12$-sided polygon with more vertices collinear than this one.

1984 Bundeswettbewerb Mathematik, 2

Determine all bounded closed subsets $F$ of the plane with the following property: $F$ consists of at least two points and always contains two points $A$ and $B$ as well as at least one of the two semicircular arcs over the segment $AB$. Definitions: A subset of the $F$ of the plane is said to be closed if: For every point $P$ of the plane that is not an element of $F$ , there is a (non-degenerate) disc with center $P$ that has no elements of $F$.

1968 Polish MO Finals, 5

Given $n \ge 4$ points in the plane such that any four of them are the vertices of a convex quadrilateral, prove that these points are the vertices of a convex polygon.

2006 Estonia National Olympiad, 2

Prove that the circle with radius $2$ can be completely covered with $7$ unit circles

1966 IMO Shortlist, 14

What is the maximal number of regions a circle can be divided in by segments joining $n$ points on the boundary of the circle ? [i]Posted already on the board I think...[/i]

1996 Tournament Of Towns, (500) 2

The square $0\le x\le 1$, $0\le y\le 1$ is drawn in the plane $Oxy$. A grasshopper sitting at a point $M$ with noninteger coordinates outside this square jumps to a new point which is symmetrical to $M$ with respect to the leftmost (from the grasshopper’s point of view) vertex of the square. Prove that no matter how many times the grasshopper jumps, it will never reach the distance more than $10 d$ from the center $C$ of the square, where $d$ is the distance between the initial position $M$ and the center $C$. (A Kanel)