This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2011 Sharygin Geometry Olympiad, 18

On the plane, given are $n$ lines in general position, i.e. any two of them aren’t parallel and any three of them don’t concur. These lines divide the plane into several parts. What is a) the minimal, b) the maximal number of these parts that can be angles?

1997 All-Russian Olympiad Regional Round, 9.1

A regular $1997$-gon is divided into triangles by non-intersecting diagonals. Prove that exactly one of them is acute-angled.

1997 Croatia National Olympiad, Problem 4

Let $k$ be a natural number. Determine the number of non-congruent triangles with the vertices at vertices of a given regular $6k$-gon.

2020 Durer Math Competition Finals, 3

In the plane, construct as many lines in general position as possible, with any two of them intersecting in a point with integer coordinates.

1965 Poland - Second Round, 5

Prove that a square can be divided into any number greater than 5 squares, but cannot be divided into 5 squares.

2017 JBMO Shortlist, C2

Consider a regular 2n-gon $ P$,$A_1,A_2,\cdots ,A_{2n}$ in the plane ,where $n$ is a positive integer . We say that a point $S$ on one of the sides of $P$ can be seen from a point $E$ that is external to $P$ , if the line segment $SE$ contains no other points that lie on the sides of $P$ except $S$ .We color the sides of $P$ in 3 different colors (ignore the vertices of $P$,we consider them colorless), such that every side is colored in exactly one color, and each color is used at least once . Moreover ,from every point in the plane external to $P$ , points of most 2 different colors on $P$ can be seen .Find the number of distinct such colorings of $P$ (two colorings are considered distinct if at least one of sides is colored differently). [i]Proposed by Viktor Simjanoski, Macedonia[/i] JBMO 2017, Q4

2013 Ukraine Team Selection Test, 12

$4026$ points were noted on the plane, not three of which lie on a straight line. The $2013$ points are the vertices of a convex polygon, and the other $2013$ vertices are inside this polygon. It is allowed to paint each point in one of two colors. Coloring will be good if some pairs of dots can be combined segments with the following conditions: $\bullet$ Each segment connects dots of the same color. $\bullet$ No two drawn segments intersect at their inner points. $\bullet$ For an arbitrary pair of dots of the same color, there is a path along the lines from one point to another. Please note that the sides of the convex $2013$ rectangle are not automatically drawn segments, although some (or all) can be drawn as needed. Prove that the total number of good colors does not depend on the specific locations of the points and find that number.

2020 Kyiv Mathematical Festival, 2

On the map, the Flower City has the form of a right triangle $ABC$ (see Fig.1). The length of each leg is $6$ meters. All the streets of the city run parallel to one of the legs at a distance of $1$ meter from each other. A river flows along the hypotenuse. From their houses that are located at points $V$ and $S$, at the same time get the Cog and Tab. Each short moves to rivers according to the following rule: tosses his coin, and if the [b]heads[/b] falls, he passes $1$ meter parallel to the leg $AB$ to the north (up), and if tails, then passes $1$ meter parallel to the leg $AC$ on east (right). If the Cog and the Tab meet at the same point, then they move together, tossing a coin. a) Which is more likely: Cog and Tab will meet on the way to the river, or will they come to different points on the shore? b) At what point near the river should the Stranger sit, if he wants the most did Gvintik and Shpuntik come to him together? [img]https://cdn.artofproblemsolving.com/attachments/d/c/5d6f75d039e8f2dd6a0ddfe6c4cb046b83f24c.png[/img] [hide=original wording] На мапi Квiткове мiсто має вигляд прямокутного трикутника ABC (див. рисунок 1). Довжина кожного катету – 6 метрiв. Всi вулицi мiста проходять паралельно одному за катетiв на вiдстанi 1 метра одна вiд одної. Вздовж гiпотенузи тече рiка. Зi своїх будиночкiв, що знаходяться в точках V та S, одночасно виходять Гвинтик та Шпунтик. Кожен коротулька рухається до рiчки за таким правилом: пiдкидає свою монетку, та якщо випадає Орел, вiн проходить 1 метр паралельно катету AB на пiвнiч (вгору), а якщо Решка, то проходить 1 метр паралельно катету AC на схiд (вправо). Якщо Гвинтик та Шпунтик зустрiчаються в однiй точцi, то далi вони рушають разом, пiдкидаючи монетку Гвинтика. 1. Що бiльш ймовiрно: Гвинтик та Шпунтик зустрiнуться на шляху до рiки, або вони прийдуть у рiзнi точки берега? 2. В якiй точцi бiля рiки має сидiти Незнайка, якщо вiн хоче, щоб найбiльш ймовiрно до нього прийшли Гвинтик та Шпунтик разом?[/hide]

1991 All Soviet Union Mathematical Olympiad, 546

The figure below is cut along the lines into polygons (which need not be convex). No polygon contains a $2 \times 2$ square. What is the smallest possible number of polygons? [missing figure]

1992 Miklós Schweitzer, 9

Let K be a bounded, d-dimensional convex polyhedron that is not simplex and P is a point on K. Show that if vertices $P_1 , ..., P_k$ are not all on the same face of K, then one of them can be omitted so that the convex hull of the remaining vertices of K still contains P. [hide=note]caratheodory's theorem might be useful. [/hide]

2010 Junior Balkan Team Selection Tests - Romania, 5

Let $n$ be a non-zero natural number, $n \ge 5$. Consider $n$ distinct points in the plane, each colored or white, or black. For each natural $k$ , a move of type $k, 1 \le k <\frac {n} {2}$, means selecting exactly $k$ points and changing their color. Determine the values of $n$ for which, whatever $k$ and regardless of the initial coloring, there is a finite sequence of $k$ type moves, at the end of which all points have the same color.

1987 Polish MO Finals, 6

A plane is tiled with regular hexagons of side $1$. $A$ is a fixed hexagon vertex. Find the number of paths $P$ such that: (1) one endpoint of $P$ is $A$, (2) the other endpoint of $P$ is a hexagon vertex, (3) $P$ lies along hexagon edges, (4) $P$ has length $60$, and (5) there is no shorter path along hexagon edges from $A$ to the other endpoint of $P$.

2021/2022 Tournament of Towns, P7

A checkered square of size $2\times2$ is covered by two triangles. Is it necessarily true that: [list=a] [*]at least one of its four cells is fully covered by one of the triangles; [*]some square of size $1\times1$ can be placed into one of these triangles? [/list] [i]Alexandr Shapovalov[/i]

Kvant 2021, M2670

There are 100 points on the plane so that any 10 of them are vertices of a convex polygon. Does it follow from this that all these points are the vertices of a convex 100-gon? [i]From the folklore[/i]

2016 Saudi Arabia BMO TST, 4

On a checkered square $10 \times 10$ the cells of the upper left $5 \times 5$ square are black and all the other cells are white. What is the maximal $n$ such that the original square can be dissected (along the borders of the cells) into $n$ polygons such that in each of them the number of black cells is three times less than the number of white cells? (The polygons need not be congruent or even equal in area.)

1988 IMO Shortlist, 8

Let $ u_1, u_2, \ldots, u_m$ be $ m$ vectors in the plane, each of length $ \leq 1,$ with zero sum. Show that one can arrange $ u_1, u_2, \ldots, u_m$ as a sequence $ v_1, v_2, \ldots, v_m$ such that each partial sum $ v_1, v_1 \plus{} v_2, v_1 \plus{} v_2 \plus{} v_3, \ldots, v_1, v_2, \ldots, v_m$ has length less than or equal to $ \sqrt {5}.$

1996 Tournament Of Towns, (508) 1

Can one paint four points in the plane red and another four points black so that any three points of the same colour are vertices of a parallelogram whose fourth vertex is a point of the other colour? (NB Vassiliev)

1999 Tournament Of Towns, 2

On a rectangular piece of paper there are (a) several marked points all on one straight line, (b) three marked points (not necessarily on a straight line). We are allowed to fold the paper several times along a straight line not containing marked points and then puncture the folded paper with a needle. Show that this can be done so that after the paper has been unfolded all the marked points are punctured and there are no extra holes. (A Shapovalov)

1997 Tournament Of Towns, (536) 1

A cube is cut into 99 smaller cubes, exactly 98 of which are unit cubes. Find the volume of the original cube. (V Proizvolov)

2013 Tournament of Towns, 1

There are six points on the plane such that one can split them into two triples each creating a triangle. Is it always possible to split these points into two triples creating two triangles with no common point (neither inside, nor on the boundary)?

2001 German National Olympiad, 3

Wiebke and Stefan play the following game on a rectangular sheet of paper. They start with a rectangle with $60$ rows and $40$ columns and cut it in turns into smaller rectangles. The cuttings must be made along the gridlines, and a player in turn may cut only one smaller rectangle. By that, Stefan makes only vertical cuts, while Wiebke makes only horizontal cuts. A player who cannot make a regular move loses the game. (a) Who has a winning strategy if Stefan makes the first move? (b) Who has a winning strategy if Wiebke makes the first move?

1992 Tournament Of Towns, (334) 2

Let $a$ and $S$ be the length of the side and the area of regular triangle inscribed in a circle of radius $1$. A closed broken line $A_1A_2...A_{51}A_1$ consisting of $51$ segments of the same length $a$ is placed inside the circle. Prove that the sum of areas of the $ 51$ triangles between the neighboring segments $$A_1A_2A_3, A_2A_3A_4,..., A_{49}A_{50}A_{51}, A_{50}A_{51}A_1, A_{51}A_1A_2$$ is not less than $3S$. (A. Berzinsh, Riga)

1983 All Soviet Union Mathematical Olympiad, 369

The $M$ set consists of $k$ non-intersecting segments on the line. It is possible to put an arbitrary segment shorter than $1$ cm on the line in such a way, that his ends will belong to $M$. Prove that the total sum of the segment lengths is not less than $1/k$ cm.

1971 IMO Longlists, 8

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

1991 Spain Mathematical Olympiad, 1

In the coordinate plane, consider the set of all segments of integer lengths whose endpoints have integer coordinates. Prove that no two of these segments form an angle of $45^o$. Are there such segments in coordinate space?