This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

Russian TST 2016, P1

$101$ blue and $101$ red points are selected on the plane, and no three lie on one straight line. The sum of the pairwise distances between the red points is $1$ (that is, the sum of the lengths of the segments with ends at red points), the sum of the pairwise distances between the blue ones is also $1$, and the sum of the lengths of the segments with the ends of different colors is $400$. Prove that you can draw a straight line separating everything red dots from all blue ones.

1997 Slovenia Team Selection Test, 3

Let $A_1,A_2,...,A_n$ be $n \ge 2$ distinct points on a circle. Find the number of colorings of these points with $p \ge 2$ colors such that every two adjacent points receive different colors

2007 Portugal MO, 4

Fernanda decided to decorate a square blanket with a ribbon and buttons, placing a button in the center of each square where the ribbon passes and forming the design indicated in the figure. If Fernanda sews the first button in the shaded square on line $0$, on which line does she sew the $2007$th button? [img]https://cdn.artofproblemsolving.com/attachments/2/9/0c9c85ec6448ee3f6f363c8f4bcdd5209f53f6.png[/img]

2000 Tuymaada Olympiad, 2

Is it possible to paint the plane in $4$ colors so that inside any circle are the dots of all four colors?

2003 BAMO, 3

A lattice point is a point $(x, y)$ with both $x$ and $y$ integers. Find, with proof, the smallest $n$ such that every set of $n$ lattice points contains three points that are the vertices of a triangle with integer area. (The triangle may be degenerate, in other words, the three points may lie on a straight line and hence form a triangle with area zero.)

Ukrainian TYM Qualifying - geometry, 2019.17

$n$ points are marked on the board points that are vertices of the regular $n$ -gon. One of the points is a chip. Two players take turns moving it to the other marked point and at the same time draw a segment that connects them. If two points already connected by a segment, such a move is prohibited. A player who can't make a move, lose. Which of the players can guarantee victory?

2000 Tournament Of Towns, 2

Each of a pair of opposite faces of a unit cube is marked by a dot. Each of another pair of opposite faces is marked by two dots. Each of the remaining two faces is marked by three dots. Eight such cubes are used to construct a $2\times 2 \times 2$ cube. Count the total number of dots on each of its six faces. Can we obtain six consecutive numbers? (A Shapovalov)

1999 Mongolian Mathematical Olympiad, Problem 1

The plane is divided into unit cells, and each of the cells is painted in one of two given colors. Find the minimum possible number of cells in a figure consisting of entire cells which contains each of the $16$ possible colored $2\times2$ squares.

1957 Moscow Mathematical Olympiad, 356

A planar polygon $A_1A_2A_3 . . .A_{n-1}A_n$ ($n > 4$) is made of rigid rods that are connected by hinges. Is it possible to bend the polygon (at hinges only!) into a triangle?

2021 EGMO, 5

A plane has a special point $O$ called the origin. Let $P$ be a set of 2021 points in the plane such that [list] [*] no three points in $P$ lie on a line and [*] no two points in $P$ lie on a line through the origin. [/list] A triangle with vertices in $P$ is [i]fat[/i] if $O$ is strictly inside the triangle. Find the maximum number of fat triangles.

1972 Bulgaria National Olympiad, Problem 4

Find maximal possible number of points lying on or inside a circle with radius $R$ in such a way that the distance between every two points is greater than $R\sqrt2$. [i]H. Lesov[/i]

1996 All-Russian Olympiad Regional Round, 10.2

Is it true that from an arbitrary triangle you can cut three equal figures, the area of each of which is more than a quarter of the area triangle?

2019 Durer Math Competition Finals, 1

Find the number of non-isosceles triangles (up to congruence) with integral side lengths, in which the sum of the two shorter sides is $19$.

2023 Durer Math Competition (First Round), 4

We are given an angle $0^o < \phi \le 180^o$ and a circular disc. An ant begins its journey from an interior point of the disc, travelling in a straight line in a certain direction. When it reaches the edge of the disc, it does the following: it turns clockwise by the angle $\phi $, and if its new direction does not point towards the interior of the disc, it turns by the angle $\phi $ again, and repeats this until it faces the interior. Then it continues its journey in this new direction and turns as before every time when it reaches the edge. For what values of $\phi $ is it true that for any starting point and initial direction the ant eventually returns to its starting position?

1984 Bulgaria National Olympiad, Problem 3

Points $P_1,P_2,\ldots,P_n,Q$ are given in space $(n\ge4)$, no four of which are in a plane. Prove that if for any three distinct points $P_\alpha,P_\beta,P_\gamma$ there is a point $P_\delta$ such that the tetrahedron $P_\alpha P_\beta P_\gamma P_\delta$ contains the point $Q$, then $n$ is an even number.

1966 IMO Shortlist, 52

A figure with area $1$ is cut out of paper. We divide this figure into $10$ parts and color them in $10$ different colors. Now, we turn around the piece of paper, divide the same figure on the other side of the paper in $10$ parts again (in some different way). Show that we can color these new parts in the same $10$ colors again (hereby, different parts should have different colors) such that the sum of the areas of all parts of the figure colored with the same color on both sides is $\geq \frac{1}{10}.$

May Olympiad L1 - geometry, 1999.4

Ten square cardboards of $3$ centimeters on a side are cut by a line, as indicated in the figure. After the cuts, there are $20$ pieces: $10$ triangles and $10$ trapezoids. Assemble a square that uses all $20$ pieces without overlaps or gaps. [img]https://cdn.artofproblemsolving.com/attachments/7/9/ec2242cca617305b02eef7a5409e6a6b482d66.gif[/img]

2005 Abels Math Contest (Norwegian MO), 2a

In an aquarium there are nine small fish. The aquarium is cube shaped with a side length of two meters and is completely filled with water. Show that it is always possible to find two small fish with a distance of less than $\sqrt3$ meters.

2016 Korea Summer Program Practice Test, 8

There are distinct points $A_1, A_2, \dots, A_{2n}$ with no three collinear. Prove that one can relabel the points with the labels $B_1, \dots, B_{2n}$ so that for each $1 \le i < j \le n$ the segments $B_{2i-1} B_{2i}$ and $B_{2j-1} B_{2j}$ do not intersect and the following inequality holds. \[ B_1 B_2 + B_3 B_4 + \dots + B_{2n-1} B_{2n} \ge \frac{2}{\pi} (A_1 A_2 + A_3 A_4 + \dots + A_{2n-1} A_{2n}) \]

1957 Putnam, B7

Let $C$ consist of a regular polygon and its interior. Show that for each positive integer $n$, there exists a set of points $S(n)$ in the plane such that every $n$ points can be covered by $C$, but $S(n)$ cannot be covered by $C.$

2018 Argentina National Olympiad, 3

You have a $7\times 7$ board divided into $49$ boxes. Mateo places a coin in a box. a) Prove that Mateo can place the coin so that it is impossible for Emi to completely cover the $48$ remaining squares, without gaps or overlaps, using $15$ $3\times1$ rectangles and a cubit of three squares, like those in the figure. [img]https://cdn.artofproblemsolving.com/attachments/6/9/a467439094376cd95c6dfe3e2ad3e16fe9f124.png[/img] b) Prove that no matter which square Mateo places the coin in, Emi will always be able to cover the 48 remaining squares using $14$ $3\times1$ rectangles and two cubits of three squares.

1970 All Soviet Union Mathematical Olympiad, 134

Given five segments. It is possible to construct a triangle of every subset of three of them. Prove that at least one of those triangles is acute-angled.

1987 Greece Junior Math Olympiad, 1

We color all the points of the plane with two colors. Prove that there are (at least) two points of the plane having the same color and at distance $1$ among them.

2017 ELMO Shortlist, 3

Call the ordered pair of distinct circles $(\omega, \gamma)$ scribable if there exists a triangle with circumcircle $\omega$ and incircle $\gamma$. Prove that among $n$ distinct circles there are at most $(n/2)^2$ scribable pairs. [i]Proposed by Daniel Liu

2022 Chile National Olympiad, 5

Is it possible to divide a polygon with $21$ sides into $2022$ triangles in such a way that among all the vertices there are not three collinear?