This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2020 Spain Mathematical Olympiad, 4

Ana and Benito play a game which consists of $2020$ turns. Initially, there are $2020$ cards on the table, numbered from $1$ to $2020$, and Ana possesses an extra card with number $0$. In the $k$-th turn, the player that doesn't possess card $k-1$ chooses whether to take the card with number $k$ or to give it to the other player. The number in each card indicates its value in points. At the end of the game whoever has most points wins. Determine whether one player has a winning strategy or whether both players can force a tie, and describe the strategy.

2019 China Second Round Olympiad, 4

Let $V$ be a set of $2019$ points in space where any of the four points are not on the same plane, and $E$ be the set of edges connected between them. Find the smallest positive integer $n$ satisfying the following condition: if $E$ has at least $n$ elements, then there exists $908$ two-element subsets of $E$ such that [list][*]The two edges in each subset share a common vertice, [*]Any of the two subsets do not intersect.[/list]

2014 Portugal MO, 6

One hundred musicians are planning to organize a festival with several concerts. In each concert, while some of the one hundred musicians play on stage, the others remain in the audience assisting to the players. What is the least number of concerts so that each of the musicians has the chance to listen to each and every one of the other musicians on stage?

2002 Mongolian Mathematical Olympiad, Problem 1

Let $n,k$ be given natural numbers. Find the smallest possible cardinality of a set $A$ with the following property: There exist subsets $A_1,A_2,\ldots,A_n$ of $A$ such that the union of any $k$ of them is $A$, but the union of any $k-1$ of them is never $A$.

2007 Regional Olympiad of Mexico Northeast, 3

On a circular board there are $19$ squares numbered in order from $1$ to $19$ (to the right of $1$ is $2$, to the right of it is $3$, and so on, until $1$ is to the right of $19$). In each box there is a token. Every minute each checker moves to its right the number of the box it is in at that moment plus one; for example, the piece that is in the $7$th place leaves the first minute $7 + 1$ places to its right until the $15$th square; the second minute that same checker moves to your right $15 + 1$ places, to square $12$, etc. Determine if at some point all the tokens reach the place where they started and, if so, say how many minutes must elapse. [hide=original wording]En un tablero circular hay 19 casillas numeradas en orden del 1 al 19 (a la derecha del 1 está el 2, a la derecha de éste está el 3 y así sucesivamente, hasta el 1 que está a la derecha del 19). En cada casilla hay una ficha. Cada minuto cada ficha se mueve a su derecha el número de la casilla en que se encuentra en ese momento más una; por ejemplo, la ficha que está en el lugar 7 se va el primer minuto 7 + 1 lugares a su derecha hasta la casilla 15; el segundo minuto esa misma ficha se mueve a su derecha 15 + 1 lugares, hasta la casilla 12, etc. Determinar si en algún momento todas las fichas llegan al lugar donde empezaron y, si es así, decir cuántos minutos deben transcurrir.[/hide]

2007 Junior Balkan Team Selection Tests - Romania, 4

We call a set of points [i]free[/i] if there is no equilateral triangle with the vertices among the points of the set. Prove that every set of $n$ points in the plane contains a [i]free[/i] subset with at least $\sqrt{n}$ elements.

2010 HMNT, 4

An ant starts at the point $(1, 0)$. Each minute, it walks from its current position to one of the four adjacent lattice points until it reaches a point $(x, y)$ with $|x| + |y| \le 2$. What is the probability that the ant ends at the point $(1, 1)$?

1999 USAMO, 1

Some checkers placed on an $n \times n$ checkerboard satisfy the following conditions: (a) every square that does not contain a checker shares a side with one that does; (b) given any pair of squares that contain checkers, there is a sequence of squares containing checkers, starting and ending with the given squares, such that every two consecutive squares of the sequence share a side. Prove that at least $(n^{2}-2)/3$ checkers have been placed on the board.

2012 Iran MO (3rd Round), 6

[b]a)[/b] Prove that $a>0$ exists such that for each natural number $n$, there exists a convex $n$-gon $P$ in plane with lattice points as vertices such that the area of $P$ is less than $an^3$. [b]b)[/b] Prove that there exists $b>0$ such that for each natural number $n$ and each $n$-gon $P$ in plane with lattice points as vertices, the area of $P$ is not less than $bn^2$. [b]c)[/b] Prove that there exist $\alpha,c>0$ such that for each natural number $n$ and each $n$-gon $P$ in plane with lattice points as vertices, the area of $P$ is not less than $cn^{2+\alpha}$. [i]Proposed by Mostafa Eynollahzade[/i]

2020 Purple Comet Problems, 18

Wendy randomly chooses a positive integer less than or equal to $2020$. The probability that the digits in Wendy's number add up to $10$ is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2001 Baltic Way, 4

Let $p$ and $q$ be two different primes. Prove that \[\left\lfloor\frac{p}{q}\right\rfloor+\left\lfloor\frac{2p}{q}\right\rfloor+\left\lfloor\frac{3p}{q}\right\rfloor+\ldots +\left\lfloor\frac{(q-1)p}{q}\right\rfloor=\frac{1}{2}(p-1)(q-1) \]

2022 CMIMC, 1.5

At CMIMC headquarters, there is a row of $n$ lightbulbs, each of which is connected to a light switch. Daniel the electrician knows that exactly one of the switches doesn't work, and needs to find out which one. Every second, he can do exactly one of 3 things: [list] [*] Flip a switch, changing the lightbulb from off/on or on/off (unless the switch is broken). [*] Check if a given lightbulb is on or off. [*] Measure the total electricity usage of all the lightbulbs, which tells him exactly how many are currently on. [/list] Initially, all the lightbulbs are off. Daniel was given the very difficult task of finding the broken switch in at most $n$ seconds, but fortunately he showed up to work 10 seconds early today. What is the largest possible value $n$ such that he can complete his task on time? [i]Proposed by Adam Bertelli[/i]

2003 Baltic Way, 7

A subset of $X$ of $\{1,2,3, \ldots 10000 \}$ has the following property: If $a,b$ are distinct elements of $X$, then $ab\not\in X$. What is the maximal number of elements in $X$?

2020 Tournament Of Towns, 4

For which integers $N$ it is possible to write real numbers into the cells of a square of size $N \times N$ so that among the sums of each pair of adjacent cells there are all integers from $1$ to $2(N-1)N$ (each integer once)? Maxim Didin

I Soros Olympiad 1994-95 (Rus + Ukr), 10.6

Several (at least three) turtles are crawling along the plane, the velocities of which are constant in magnitude and direction (all are equal in magnitude, but pairwise different in direction). Prove that regardless of the initial location, after some time all the turtles will be at the vertices of some convex polygon.

2008 China Girls Math Olympiad, 7

On a given $ 2008 \times 2008$ chessboard, each unit square is colored in a different color. Every unit square is filled with one of the letters C, G, M, O. The resulting board is called [i]harmonic[/i] if every $ 2 \times 2$ subsquare contains all four different letters. How many harmonic boards are there?

2017 Dutch IMO TST, 4

Let $n \geq 2$ be an integer. Find the smallest positive integer $m$ for which the following holds: given $n$ points in the plane, no three on a line, there are $m$ lines such that no line passes through any of the given points, and for all points $X \neq Y$ there is a line with respect to which $X$ and $Y$ lie on opposite sides

1999 Vietnam Team Selection Test, 3

Let a regular polygon with $p$ vertices be given, where $p$ is an odd prime number. At every vertex there is one monkey. An owner of monkeys takes $p$ peanuts, goes along the perimeter of polygon clockwise and delivers to the monkeys by the following rule: Gives the first peanut for the leader, skips the two next vertices and gives the second peanut to the monkey at the next vertex; skip four next vertices gives the second peanut for the monkey at the next vertex ... after giving the $k$-th peanut, he skips the $2 \cdot k$ next vertices and gives $k+1$-th for the monkey at the next vertex. He does so until all $p$ peanuts are delivered. [b]I.[/b] How many monkeys are there which does not receive peanuts? [b]II.[/b] How many edges of polygon are there which satisfying condition: both two monkey at its vertex received peanut(s)?

1988 IMO Longlists, 50

Prove that the numbers $A,B$ and $C$ are equal, where: - $A=$ number of ways that we can cover a $2 \times n$ rectangle with $2 \times 1$ retangles. - $B=$ number of sequences of ones and twos that add up to $n$ - $C= \sum^m_{k=0} \binom{m + k}{2 \cdot k}$ if $n = 2 \cdot m,$ and - $C= \sum^m_{k=0} \binom{m + k + 1}{2 \cdot k + 1}$ if $n = 2 \cdot m + 1.$

2023 Kyiv City MO Round 1, Problem 4

For $n \ge 2$ consider $n \times n$ board and mark all $n^2$ centres of all unit squares. What is the maximal possible number of marked points that we can take such that there don't exist three taken points which form right triangle? [i]Proposed by Mykhailo Shtandenko[/i]

2012 Iran Team Selection Test, 2

Let $n$ be a natural number. Suppose $A$ and $B$ are two sets, each containing $n$ points in the plane, such that no three points of a set are collinear. Let $T(A)$ be the number of broken lines, each containing $n-1$ segments, and such that it doesn't intersect itself and its vertices are points of $A$. Define $T(B)$ similarly. If the points of $B$ are vertices of a convex $n$-gon (are in [i]convex position[/i]), but the points of $A$ are not, prove that $T(B)<T(A)$. [i]Proposed by Ali Khezeli[/i]

Mathley 2014-15, 3

Given a regular $2013$-sided polygon, how many isosceles triangles are there whose vertices are vertices vertex of given polygon and haave an angle greater than $120^o$? Nguyen Tien Lam, High School for Natural Science,Hanoi National University.

2015 Finnish National High School Mathematics Comp, 5

Mikko takes a multiple choice test with ten questions. His only goal is to pass the test, and this requires seven points. A correct answer is worth one point, and answering wrong results in the deduction of one point. Mikko knows for sure that he knows the correct answer in the six first questions. For the rest, he estimates that he can give the correct answer to each problem with probability $p, 0 < p < 1$. How many questions Mikko should try?

2020 Peru IMO TST, 5

You are given a set of $n$ blocks, each weighing at least $1$; their total weight is $2n$. Prove that for every real number $r$ with $0 \leq r \leq 2n-2$ you can choose a subset of the blocks whose total weight is at least $r$ but at most $r + 2$.

DMM Individual Rounds, 2021 Tie

You are standing on one of the faces of a cube. Each turn, you randomly choose another face that shares an edge with the face you are standing on with equal probability, and move to that face. Let $F(n)$ the probability that you land on the starting face after $n$ turns. Supposed that $F(8) = \frac{43}{256}$ , and F(10) can be expressed as a simplified fraction $\frac{a}{b}$. Find $a+b$.