This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2021 Thailand Mathematical Olympiad, 4

Kan Krao Park is a circular park that has $21$ entrances and a straight line walkway joining each pair of two entrances. No three walkways meet at a single point. Some walkways are paved with bricks, while others are paved with asphalt. At each intersection of two walkways, excluding the entrances, is planted lotus if the two walkways are paved with the same material, and is planted waterlily if the two walkways are paved with different materials. Each walkway is decorated with lights if and only if the same type of plant is placed at least $45$ different points along that walkway. Prove that there are at least $11$ walkways decorated with lights and paved with the same material.

2016 Greece JBMO TST, 4

Vaggelis has a box that contains $2015$ white and $2015$ black balls. In every step, he follows the procedure below: He choses randomly two balls from the box. If they are both blacks, he paints one white and he keeps it in the box, and throw the other one out of the box. If they are both white, he keeps one in the box and throws the other out. If they are one white and one black, he throws the white out, and keeps the black in the box. He continues this procedure, until three balls remain in the box. He then looks inside and he sees that there are balls of both colors. How many white balls does he see then, and how many black?

1999 Spain Mathematical Olympiad, 6

A plane is divided into $N$ regions by three families of parallel lines. No three lines pass through the same point. What is the smallest number of lines needed so that $N > 1999$?

2013 ELMO Shortlist, 9

Let $f_0$ be the function from $\mathbb{Z}^2$ to $\{0,1\}$ such that $f_0(0,0)=1$ and $f_0(x,y)=0$ otherwise. For each positive integer $m$, let $f_m(x,y)$ be the remainder when \[ f_{m-1}(x,y) + \sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j,y+k) \] is divided by $2$. Finally, for each nonnegative integer $n$, let $a_n$ denote the number of pairs $(x,y)$ such that $f_n(x,y) = 1$. Find a closed form for $a_n$. [i]Proposed by Bobby Shen[/i]

1988 India National Olympiad, 3

Five men, $ A$, $ B$, $ C$, $ D$, $ E$ are wearing caps of black or white colour without each knowing the colour of his cap. It is known that a man wearing black cap always speaks the truth while the ones wearing white always tell lies. If they make the following statements, find the colour worn by each of them: $ A$ : I see three black caps and one white cap. $ B$ : I see four white caps $ C$ : I see one black cap and three white caps $ D$ : I see your four black caps.

1980 Tournament Of Towns, (003) 3

If permutations of the numbers $2, 3,4,..., 102$ are denoted by $a_i,a_2, a_3,...,a_{101}$, find all such permutations in which $a_k$ is divisible by $k$ for all $k$.

1966 IMO Shortlist, 43

Given $5$ points in a plane, no three of them being collinear. Each two of these $5$ points are joined with a segment, and every of these segments is painted either red or blue; assume that there is no triangle whose sides are segments of equal color. [b]a.)[/b] Show that: [i](1)[/i] Among the four segments originating at any of the $5$ points, two are red and two are blue. [i](2)[/i] The red segments form a closed way passing through all $5$ given points. (Similarly for the blue segments.) [b]b.)[/b] Give a plan how to paint the segments either red or blue in order to have the condition (no triangle with equally colored sides) satisfied.

2021 Saudi Arabia Training Tests, 31

Let $n$ be a positive integer. What is the smallest value of $m$ with $m > n$ such that the set $M = \{n, n + 1, ..., m\}$ can be partitioned into subsets so that in each subset, there is a number which equals to the sum of all other numbers of this subset?

1987 IMO Longlists, 49

In the coordinate system in the plane we consider a convex polygon $W$ and lines given by equations $x = k, y = m$, where $k$ and $m$ are integers. The lines determine a tiling of the plane with unit squares. We say that the boundary of $W$ intersects a square if the boundary contains an interior point of the square. Prove that the boundary of $W$ intersects at most $4 \lceil d \rceil $ unit squares, where $d$ is the maximal distance of points belonging to $W$ (i.e., the diameter of $W$) and $\lceil d \rceil$ is the least integer not less than $d.$

2023 Caucasus Mathematical Olympiad, 7

Sasha has $10$ cards with numbers $1, 2, 4, 8,\ldots, 512$. He writes the number $0$ on the board and invites Dima to play a game. Dima tells the integer $0 < p < 10, p$ can vary from round to round. Sasha chooses $p$ cards before which he puts a “$+$” sign, and before the other cards he puts a “$-$" sign. The obtained number is calculated and added to the number on the board. Find the greatest absolute value of the number on the board Dima can get on the board after several rounds regardless Sasha’s moves.

2009 India IMO Training Camp, 6

Prove The Following identity: $ \sum_{j \equal{} 0}^n \left ({3n \plus{} 2 \minus{} j \choose j}2^j \minus{} {3n \plus{} 1 \minus{} j \choose j \minus{} 1}2^{j \minus{} 1}\right ) \equal{} 2^{3n}$. The Second term on left hand side is to be regarded zero for j=0.

2022 IOQM India, 12

A $12 \times 12$ board is divided into $144$ unit squares by drawing lines parallel to the sides. Two rooks placed on two unit squares are said to be non-attacking if they are not in the same column or same row. Find the least number $N$ such that if $N$ rooks are placed on the unit squares, one rook per square, we can always find $7$ rooks such that no two are attacking each other.

2024 Malaysia IMONST 2, 6

There are $2n$ points on a circle, $n$ are red and $n$ are blue. Janson found a red frog and a blue frog at a red point and a blue point on the circle respectively. Every minute, the red frog moves to the next red point in the clockwise direction and the blue frog moves to the next blue point in the anticlockwise direction. Prove that for any initial position of the two frogs, Janson can draw a line through the circle, such that the two frogs are always on opposite sides of the line.

2016 PUMaC Combinatorics B, 1

Two fair six-sided dice are rolled. The probability that the positive difference between the two rolls is at least $4$ can be written in simplest form as $\frac{m}{n}$. Compute $m + n$.

2021 Indonesia TST, C

Let $p$ be an odd prime. Determine the number of nonempty subsets from $\{1, 2, \dots, p - 1\}$ for which the sum of its elements is divisible by $p$.

2019 IMO Shortlist, C3

The Bank of Bath issues coins with an $H$ on one side and a $T$ on the other. Harry has $n$ of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing $H$, then he turns over the $k$th coin from the left; otherwise, all coins show $T$ and he stops. For example, if $n=3$ the process starting with the configuration $THT$ would be $THT \to HHT \to HTT \to TTT$, which stops after three operations. (a) Show that, for each initial configuration, Harry stops after a finite number of operations. (b) For each initial configuration $C$, let $L(C)$ be the number of operations before Harry stops. For example, $L(THT) = 3$ and $L(TTT) = 0$. Determine the average value of $L(C)$ over all $2^n$ possible initial configurations $C$. [i]Proposed by David Altizio, USA[/i]

2017 Argentina National Math Olympiad Level 2, 3

Given a polygon, a [i]triangulation[/i] is a division of the polygon into triangles whose vertices are the vertices of the polygon. Determine the values of $n$ for which the regular polygon with $n$ sides has a triangulation with all its triangles being isosceles.

2022 Saudi Arabia BMO + EGMO TST, 1.4

At a gala banquet, $12n + 6$ chairs, where $n \in N$, are equally arranged around a large round table. A seating will be called a proper seating of rank $n$ if a gathering of $6n + 3$ married couples sit around this table such that each seated person also has exactly one sibling (brother/sister) of the opposite gender present (siblings cannot be married to each other) and each man is seated closer to his wife than his sister. Among all proper seats of rank n find the maximum possible number of women seated closer to their brother than their husband. (The maximum is taken not only across all possible seating arrangements for a given gathering, but also across all possible gatherings.)

2000 Saint Petersburg Mathematical Olympiad, 9.1

On the two sides of the road two lines of trees are planted. On every tree, the number of oaks among itself and its neighbors is written. (For the first and last trees, this is the number of oaks among itself and its only neighbor). Prove that if the two sequences of numbers on the trees are equal, then sequnces of trees on the two sides of the road are equal [I]Proposed by A. Khrabrov, D. Rostovski[/i]

2006 Pre-Preparation Course Examination, 1

a) Find the value of $\sum_{n=1}^{\infty}\frac{\phi(n)}{2^n-1}$; b) Show that $\sum_k {m\choose k}{{n+k}\choose m}=\sum_k {m\choose k} {n\choose k} 2^k$ for $m,n\geq 0$; c) Using the identity $(1-x)^{-\frac 12}(1-x)^{-\frac 12}=(1-x)^{-1}$ derive a combinatorial identity! d) Express the value of $\sum (2^{a_1}-1)\ldots (2^{a_k}-1)$ where the sum is over all $2^{n-1}$ ways of choosing $(a_1,a_2,\ldots,a_k)$ such that $a_1+a_2+\ldots +a_k=n$, as a function of some Fibonacci term.

1989 All Soviet Union Mathematical Olympiad, 493

One bird lives in each of $n$ bird-nests in a forest. The birds change nests, so that after the change there is again one bird in each nest. Also for any birds $A, B, C, D$ (not necessarily distinct), if the distance $AB < CD$ before the change, then $AB > CD$ after the change. Find all possible values of $n$.

2018 International Zhautykov Olympiad, 4

Crocodile chooses $1$ x $4$ tile from $2018$ x $2018$ square.The bear has tilometer that checks $3$x$3$ square of $2018$ x $2018$ is there any of choosen cells by crocodile.Tilometer says "YES" if there is at least one choosen cell among checked $3$ x $3$ square.For what is the smallest number of such questions the Bear can certainly get an affirmative answer?

2009 South africa National Olympiad, 3

Ten girls, numbered from 1 to 10, sit at a round table, in a random order. Each girl then receives a new number, namely the sum of her own number and those of her two neighbours. Prove that some girl receives a new number greater than 17.

2017 Kosovo National Mathematical Olympiad, 4

Prove the identity $\sum_{k=2}^{n} k(k-1)\binom{n}{k} =\binom{n}{2} 2^{n-1}$ for all $n=2,3,4,...$

2000 IMO Shortlist, 5

In the plane we have $n$ rectangles with parallel sides. The sides of distinct rectangles lie on distinct lines. The boundaries of the rectangles cut the plane into connected regions. A region is [i]nice[/i] if it has at least one of the vertices of the $n$ rectangles on the boundary. Prove that the sum of the numbers of the vertices of all nice regions is less than $40n$. (There can be nonconvex regions as well as regions with more than one boundary curve.)