This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2018 Malaysia National Olympiad, A3

Given a regular polygon with $n$ sides. It is known that there are $1200$ ways to choose three of the vertices of the polygon such that they form the vertices of a [b]right triangle[/b]. What is the value of $n$?

2008 India Regional Mathematical Olympiad, 4

Find the number of all $ 6$-digit natural numbers such that the sum of their digits is $ 10$ and each of the digits $ 0,1,2,3$ occurs at least once in them. [14 points out of 100 for the 6 problems]

2022 Germany Team Selection Test, 2

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

2014 Kurschak Competition, 1

Consider a company of $n\ge 4$ people, where everyone knows at least one other person, but everyone knows at most $n-2$ of the others. Prove that we can sit four of these people at a round table such that all four of them know exactly one of their two neighbors. (Knowledge is mutual.)

1999 IMO Shortlist, 6

Suppose that every integer has been given one of the colours red, blue, green or yellow. Let $x$ and $y$ be odd integers so that $|x| \neq |y|$. Show that there are two integers of the same colour whose difference has one of the following values: $x,y,x+y$ or $x-y$.

1987 Tournament Of Towns, (140) 5

A certain number of cubes are painted in six colours, each cube having six faces of different colours (the colours in different cubes may be arranged differently) . The cubes are placed on a table so as to form a rectangle. We are allowed to take out any column of cubes, rotate it (as a whole) along its long axis and replace it in the rectangle. A similar operation with rows is also allowed. Can we always make the rectangle monochromatic (i.e. such that the top faces of all the cubes are the same colour) by means of such operations? ( D. Fomin , Leningrad)

1991 Tournament Of Towns, (289) 5

There are $8$ cities in a certain kingdom. The king wants to have a system of roads constructed so that one can go along those roads from any city to any other one without going through more than one intermediate city and so that no more than $k$ roads go out of any city. For what values of $k$ is this possible? (D. Fomin, Leningrad)

1969 Spain Mathematical Olympiad, 3

A bag contains plastic cubes of the same size, whose faces have been painted in colors: white, red, yellow, green, blue and violet (without repeating a color on two faces of the same cube). How many of these cubes can there be distinguishable to each other?

2000 Moldova Team Selection Test, 8

Let $n$ be a positive integer and let $(a_1,a_2,\ldots ,a_{2n})$ be a permutation of $1,2,\ldots ,2n$ such that the numbers $|a_{i+1}-a_i|$ are pairwise distinct for $i=1,\ldots ,2n-1$. Prove that $\{a_2,a_4,\ldots ,a_{2n}\}=\{1,2,\ldots ,n\}$ if and only if $a_1-a_{2n}=n$.

2023 Canada National Olympiad, 5

A country with $n$ cities has some two-way roads connecting certain pairs of cities. Someone notices that if the country is split into two parts in any way, then there would be at most $kn$ roads between the two parts (where $k$ is a fixed positive integer). What is the largest integer $m$ (in terms of $n$ and $k$) such that there is guaranteed to be a set of $m$ cities, no two of which are directly connected by a road?

2001 Czech-Polish-Slovak Match, 3

Let $ n$ and $ k$ be positive integers such that $ \frac{1}{2} n < k \leq \frac{2}{3} n.$ Find the least number $ m$ for which it is possible to place $ m$ pawns on $ m$ squares of an $ n \times n$ chessboard so that no column or row contains a block of $ k$ adjacent unoccupied squares.

2005 QEDMO 1st, 10 (C3)

Let $n\geq 3$ be an integer. Let also $P_1,P_2,...,P_n$ be different two-element-subsets of $M=\{1,2,...,n\}$, such that when for $i,j \in M , i\neq j$ the sets $P_i,P_j$ are not totally disjoint, then there is a $k \in M$ with $P_k = \{ i,j\}$. Prove that every element of $M$ occurse in exactly $2$ of these subsets.

LMT Speed Rounds, 2012

[b]p1[/b]. Evaluate $1! + 2! + 3! + 4! + 5! $ (where $n!$ is the product of all integers from $1$ to $n$, inclusive). [b]p2.[/b] Harold opens a pack of Bertie Bott's Every Flavor Beans that contains $10$ blueberry, $10$ watermelon, $3$ spinach and $2$ earwax-flavored jelly beans. If he picks a jelly bean at random, then what is the probability that it is not spinach-flavored? [b]p3.[/b] Find the sum of the positive factors of $32$ (including $32$ itself). [b]p4.[/b] Carol stands at a flag pole that is $21$ feet tall. She begins to walk in the direction of the flag's shadow to say hi to her friends. When she has walked $10$ feet, her shadow passes the flag's shadow. Given that Carol is exactly $5$ feet tall, how long in feet is her shadow? [b]p5.[/b] A solid metal sphere of radius $7$ cm is melted and reshaped into four solid metal spheres with radii $1$, $5$, $6$, and $x$ cm. What is the value of $x$? [b]p6.[/b] Let $A = (2,-2)$ and $B = (-3, 3)$. If $(a,0)$ and $(0, b)$ are both equidistant from $A$ and $B$, then what is the value of $a + b$? [b]p7.[/b] For every flip, there is an $x^2$ percent chance of flipping heads, where $x$ is the number of flips that have already been made. What is the probability that my first three flips will all come up tails? [b]p8.[/b] Consider the sequence of letters $Z\,\,W\,\,Y\,\,X\,\,V$. There are two ways to modify the sequence: we can either swap two adjacent letters or reverse the entire sequence. What is the least number of these changes we need to make in order to put the letters in alphabetical order? [b]p9.[/b] A square and a rectangle overlap each other such that the area inside the square but outside the rectangle is equal to the area inside the rectangle but outside the square. If the area of the rectangle is $169$, then find the side length of the square. [b]p10.[/b] If $A = 50\sqrt3$, $B = 60\sqrt2$, and $C = 85$, then order $A$, $B$, and $C$ from least to greatest. [b]p11.[/b] How many ways are there to arrange the letters of the word $RACECAR$? (Identical letters are assumed to be indistinguishable.) [b]p12.[/b] A cube and a regular tetrahedron (which has four faces composed of equilateral triangles) have the same surface area. Let $r$ be the ratio of the edge length of the cube to the edge length of the tetrahedron. Find $r^2$. [b]p13.[/b] Given that $x^2 + x + \frac{1}{x} +\frac{1}{x^2} = 10$, find all possible values of $x +\frac{1}{x}$ . [b]p14.[/b] Astronaut Bob has a rope one unit long. He must attach one end to his spacesuit and one end to his stationary spacecraft, which assumes the shape of a box with dimensions $3\times 2\times 2$. If he can attach and re-attach the rope onto any point on the surface of his spacecraft, then what is the total volume of space outside of the spacecraft that Bob can reach? Assume that Bob's size is negligible. [b]p15.[/b] Triangle $ABC$ has $AB = 4$, $BC = 3$, and $AC = 5$. Point $B$ is reflected across $\overline{AC}$ to point $B'$. The lines that contain $AB'$ and $BC$ are then drawn to intersect at point $D$. Find $AD$. [b]p16.[/b] Consider a rectangle $ABCD$ with side lengths $5$ and $12$. If a circle tangent to all sides of $\vartriangle ABD$ and a circle tangent to all sides of $\vartriangle BCD$ are drawn, then how far apart are the centers of the circles? [b]p17.[/b] An increasing geometric sequence $a_0, a_1, a_2,...$ has a positive common ratio. Also, the value of $a_3 + a_2 - a_1 - a_0$ is equal to half the value of $a_4 - a_0$. What is the value of the common ratio? [b]p18.[/b] In triangle $ABC$, $AB = 9$, $BC = 11$, and $AC = 16$. Points $E$ and $F$ are on $\overline{AB}$ and $\overline{BC}$, respectively, such that $BE = BF = 4$. What is the area of triangle $CEF$? [b]p19.[/b] Xavier, Yuna, and Zach are running around a circular track. The three start at one point and run clockwise, each at a constant speed. After $8$ minutes, Zach passes Xavier for the first time. Xavier first passes Yuna for the first time in $12$ minutes. After how many seconds since the three began running did Zach first pass Yuna? [b]p20.[/b] How many unit fractions are there such that their decimal equivalent has a cycle of $6$ repeating integers? Exclude fractions that repeat in cycles of $1$, $2$, or $3$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1988 Federal Competition For Advanced Students, P2, 2

An equilateral triangle $ A_1 A_2 A_3$ is divided into four smaller equilateral triangles by joining the midpoints $ A_4,A_5,A_6$ of its sides. Let $ A_7,...,A_{15}$ be the midpoints of the sides of these smaller triangles. The $ 15$ points $ A_1,...,A_{15}$ are colored either green or blue. Show that with any such colouring there are always three mutually equidistant points $ A_i,A_j,A_k$ having the same color.

1998 Baltic Way, 19

Consider a ping-pong match between two teams, each consisting of $1000$ players. Each player played against each player of the other team exactly once (there are no draws in ping-pong). Prove that there exist ten players, all from the same team, such that every member of the other team has lost his game against at least one of those ten players.

2012 Korea National Olympiad, 4

Let $ p \equiv 3 \pmod{4}$ be a prime. Define $T = \{ (i,j) \mid i, j \in \{ 0, 1, \cdots , p-1 \} \} \smallsetminus \{ (0,0) \} $. For arbitrary subset $ S ( \ne \emptyset ) \subset T $, prove that there exist subset $ A \subset S $ satisfying following conditions: (a) $ (x_i , y_i ) \in A ( 1 \le i \le 3) $ then $ p \not | x_1 + x_2 - y_3 $ or $ p \not | y_1 + y_2 + x_3 $. (b) $ 8 n(A) > n(S) $

2019 Regional Olympiad of Mexico Southeast, 3

Eight teams are competing in a tournament all against all (every pair of team play exactly one time among them). There are not ties and both results of every game are equally probable. What is the probability that in the tournament every team had lose at least one game and won at least one game?

2005 South africa National Olympiad, 3

A warehouse contains $175$ boots of size $8$, $175$ boots of size $9$ and $200$ boots of size $10$. Of these $550$ boots, $250$ are for the left foot and $300$ for the right foot. Let $n$ denote the total number of usable pairs of boots in the warehouse. (A usable pair consists of a left and a right boot of the same size.) (a) Is $n=50$ possible? (b) Is $n=51$ possible?

2019 Dutch IMO TST, 1

In each of the different grades of a high school there are an odd number of pupils. Each pupil has a best friend (who possibly is in a different grade). Everyone is the best friend of their best friend. In the upcoming school trip, every pupil goes to either Rome or Paris. Show that the pupils can be distributed over the two destinations in such a way that (i) every student goes to the same destination as their best friend; (ii) for each grade the absolute difference between the number of pupils that are going to Rome and that of those who are going to Paris is equal to $1$.

2024 All-Russian Olympiad, 5

A neighborhood consists of $10 \times 10$ squares. On New Year's Eve it snowed for the first time and since then exactly $10$ cm of snow fell on each square every night (and snow fell only at night). Every morning, the janitor selects one row or column and shovels all the snow from there onto one of the adjacent rows or columns (from each cell to the adjacent side). For example, he can select the seventh column and from each of its cells shovel all the snow into the cell of the left of it. You cannot shovel snow outside the neighborhood. On the evening of the 100th day of the year, an inspector will come to the city and find the cell with the snowdrift of maximal height. The goal of the janitor is to ensure that this height is minimal. What height of snowdrift will the inspector find? [i]Proposed by A. Solynin[/i]

2024 Bangladesh Mathematical Olympiad, P4

Let $a_1, a_2, \ldots, a_{11}$ be integers. Prove that there exist numbers $b_1, b_2, \ldots, b_{11}$ such that [list] [*] $b_i$ is equal to $-1,0$ or $1$ for all $i \in \{1, 2,\dots, 11\}$. [*] all numbers can't be zero at a time. [*] the number $N=a_1b_1+a_2b_2+\ldots+a_{11}b_{11}$ is divisible by $2024$. [/list]

2015 MMATHS, Mixer Round

[b]p1.[/b] Let $a_0, a_1,...,a_n$ be such that $a_n \ne 0$ and $$(1 + x + x^3)^{341}(1 + 2x + x^2 + 2x^3 + 2x^4 + x^6)^{342} =\sum^n_{i=0}a_ix^i,$$ Find the number of odd numbers in the sequence a0; a1; : : : an. [b]p2.[/b] Let $F_0 = 1$, $F_1 = 1$ and F$_k = F_{k-1} + F_{k-2}$. Let $P(x) =\sum^{99}_{k=0} x^{F_k}$ . The remainder when $P(x)$ is divided by $x^3 - 1$ can be expressed as $ax^2 + bx + c$. Find $2a + b$. [b]p3.[/b] Let $a_n$ be the number of permutations of the numbers $S = \{1, 2,...,n\}$ such that for all $k$ with $1 \le k \le n$, the sum of $k$ and the number in the $k$th position of the permutation is a power of $2$. Compute $a_{2^0} + a_{2^1} +... + a_{2^{20}}$ . [b]p4.[/b] Three identical balls are painted white and black, so that half of each sphere is a white hemisphere, and the other half is a black one. The three balls are placed on a plane surface, each with a random orientation, so that each ball has a point of contact with the other two. What is the probability that at at least one point of contact between two of the balls, both balls are the same color? [b]p5.[/b] Compute the greatest positive integer $n$ such that there exists an odd integer $a$, for which $\frac{a^{2^n}-1}{4^{4^4}}$ is not an integer. [b]p6.[/b] You are blind and cannot feel the difference between a coin that is heads up or tails up. There are $100$ coins in front of you and are told that exactly $10$ of them are heads up. On the back of this paper, explain how you can split the otherwise indistinguishable coins into two groups so that both groups have the same number of heads. [b]p7.[/b] On the back of this page, write the best math pun you can think of. You’ll get a point if we chuckle. [b]p8.[/b] Pick an integer between $1$ and $10$. If you pick $k$, and $n$ total teams pick $k$, then you’ll receive $\frac{k}{10n}$ points. [b]p9.[/b] There are four prisoners in a dungeon. Tomorrow, they will be separated into a group of three in one room, and the other in a room by himself. Each will be given a hat to wear that is either black or white – two will be given white and two black. None of them will be able to communicate with each other and none will see his or her own hat color. The group of three is lined up, so that the one in the back can see the other two, the second can see the first, but the first cannot see the others. If anyone is certain of their hat color, then they immediately shout that they know it to the rest of the group. If they can secretly prove it to the guard, they are saved. They only say something if they’re sure. Which person is sure to survive? [b]p10.[/b] Down the road, there are $10$ prisoners in a dungeon. Tomorrow they will be lined up in a single room and each given a black or white hat – this time they don’t know how many of each. The person in the back can see everyone’s hat besides his own, and similarly everyone else can only see the hats of the people in front of them. The person in the back will shout out a guess for his hat color and will be saved if and only if he is right. Then the person in front of him will have to guess, and this will continue until everyone has the opportunity to be saved. Each person can only say his or her guess of “white” or “black” when their turn comes, and no other signals may be made. If they have the night before receiving the hats to try to devise some sort of code, how many people at a minimum can be saved with the most optimal code? Describe the code on the back of this paper for full points. [b]p11.[/b] A few of the problems on this mixer contest were taken from last year’s event. One of them had fewer than $5$ correct answers, and most of the answers given were the same incorrect answer. Half a point will be given if you can guess the number of the problem on this test that corresponds to last year’s question, and another $.5$ points will be given if you can guess the very common incorrect answer. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Moscow Mathematical Olympiad, 6

There are $36$ gangsters bands.And there are war between some bands. Every gangster can belongs to several bands and every 2 gangsters belongs to different set of bands. Gangster can not be in feuding bands. Also for every gangster is true, that every band, where this gangster is not in, is in war with some band, where this gangster is in. What is maximum number of gangsters in city?

2021 Korea Winter Program Practice Test, 5

For positive integers $k$ and $n$, express the number of permutation $P=x_1x_2...x_{2n}$ consisting of $A$ and $B$ that satisfies all three of the following conditions, using $k$ and $n$. $ $ $ $ $(i)$ $A, B$ appear exactly $n$ times respectively in $P$. $ $ $ $ $(ii)$ For each $1\le i\le n$, if we denote the number of $A$ in $x_1,x_2,...,x_i$ as $a_i$ $,$ then $\mid 2a_i -i\mid \le 1$. $ $ $ $ $(iii)$ $AB$ appears exactly $k$ times in $P$. (For example, $AB$ appears 3 times in $ABBABAAB$)

2001 IMO Shortlist, 3

Define a $ k$-[i]clique[/i] to be a set of $ k$ people such that every pair of them are acquainted with each other. At a certain party, every pair of 3-cliques has at least one person in common, and there are no 5-cliques. Prove that there are two or fewer people at the party whose departure leaves no 3-clique remaining.