This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1971 All Soviet Union Mathematical Olympiad, 151

Some numbers are written along the ring. If inequality $(a-d)(b-c) < 0$ is held for the four arbitrary numbers in sequence $a,b,c,d$, you have to change the numbers $b$ and $c$ places. Prove that you will have to do this operation finite number of times.

Kvant 2021, M2653

Let $p{}$ and $q{}$ be two coprime positive integers. A frog hops along the integer line so that on every hop it moves either $p{}$ units to the right or $q{}$ units to the left. Eventually, the frog returns to the initial point. Prove that for every positive integer $d{}$ with $d < p + q$ there are two numbers visited by the frog which differ just by $d{}$. [i]Nikolay Belukhov[/i]

2022 Rioplatense Mathematical Olympiad, 2

Eight teams play a rugby tournament in which each team plays exactly one match against each of the remaining seven teams. In each match, if it's a tie each team gets $1$ point and if it isn't a tie then the winner gets $2$ points and the loser gets $0$ points. After the tournament it was observed that each of the eight teams had a different number of points and that the number of points of the winner of the tournament was equal to the sum of the number of points of the last four teams. Give an example of a tournament that satisfies this conditions, indicating the number of points obtained by each team and the result of each match.

2018 India IMO Training Camp, 1

A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even. [i]Proposed by Jeck Lim, Singapore[/i]

2005 Mediterranean Mathematics Olympiad, 3

Let $A_1,A_2,\ldots , A_n$ $(n\geq 3)$ be finite sets of positive integers. Prove, that \[ \displaystyle \frac{1}{n} \left( \sum_{i=1}^n |A_i|\right) + \frac{1}{{{n}\choose{3}}}\sum_{1\leq i < j < k \leq n} |A_i \cap A_j \cap A_k| \geq \frac{2}{{{n}\choose{2}}}\sum_{1\leq i < j \leq n}|A_i \cap A_j| \] holds, where $|E|$ is the cardinality of the set $E$

2025 Kosovo National Mathematical Olympiad`, P1

In the cells of a $5 \times 5$ grid there are some lamps. If a lamp is touched, it is turned on and it lights up all of its neighbouring cells, including its own cell. If a cell is lit up and there is a lamp in it, the lamp is also turned on and lights up its neighbouring cells, including its own. What is the smallest number of lamps needed to light up all of the cells with just one touch? [i](Note: Two cells are neighbours if they have a common side or vertex.)[/i]

1983 Tournament Of Towns, (037) A4

(a) An infinite sheet is divided into squares by two sets of parallel lines. Two players play the following game: the first player chooses a square and colours it red, the second player chooses a non-coloured square and colours it blue, the first player chooses a non-coloured square and colours it red, the second player chooses a non-coloured square and colours it blue, and so on. The goal of the first player is to colour four squares whose vertices form a square with sides parallel to the lines of the two parallel sets. The goal of the second player is to prevent him. Can the first player win? (b) What is the answer to this question if the second player is permitted to colour two squares at once? (DG Azov) PS. (a) for Juniors, (a),(b) for Seniors

2013 Bulgaria National Olympiad, 3

The integer lattice in the plane is colored with 3 colors. Find the least positive real $S$ with the property: for any such coloring it is possible to find a monochromatic lattice points $A,B,C$ with $S_{\triangle ABC}=S$. [i]Proposed by Nikolay Beluhov[/i] EDIT: It was the problem 3 (not 2), corrected the source title.

1991 Bundeswettbewerb Mathematik, 4

A strip of width $1$ is to be divided by rectangular panels of common width $1$ and denominations long $a_1$, $a_2$, $a_3$, $. . .$ be paved without gaps ($a_1 \ne 1$). From the second panel on, each panel is similar but not congruent to the already paved part of the strip. When the first $n$ slabs are laid, the length of the paved part of the strip is $sn$. Given $a_1$, is there a number that is not surpassed by any $s_n$? The accuracy answer has to be proven.

2007 International Zhautykov Olympiad, 1

There are given $111$ coins and a $n\times n$ table divided into unit cells. This coins are placed inside the unit cells (one unit cell may contain one coin, many coins, or may be empty), such that the difference between the number of coins from two neighbouring cells (that have a common edge) is $1$. Find the maximal $n$ for this to be possible.

2021 Brazil EGMO TST, 5

Let $S$ be a set, such that for every positive integer $n$, we have $|S\cap T|=1$, where $T=\{n,2n,3n\}$. Prove that if $2\in S$, then $13824\notin S$.

1994 Spain Mathematical Olympiad, 5

Let $21$ pieces, some white and some black, be placed on the squares of a $3\times 7$ rectangle. Prove that there always exist four pieces of the same color standing at the vertices of a rectangle.

2009 Tournament Of Towns, 3

In each square of a $101\times 101$ board, except the central one, is placed either a sign " turn" or a sign " straight". The chess piece " car" can enter any square on the boundary of the board from outside (perpendicularly to the boundary). If the car enters a square with the sign " straight" then it moves to the next square in the same direction, otherwise (in case it enters a square with the sign " turn") it turns either to the right or to the left ( its choice). Can one place the signs in such a way that the car never enter the central square?

Math Hour Olympiad, Grades 5-7, 2012.57

[u]Round 1[/u] [b]p1.[/b] Tom and Jerry stole a chain of $7$ sausages and are now trying to divide the bounty. They take turns biting the sausages at one of the connections. When one of them breaks a connection, he may eat any single sausages that may fall out. Tom takes the first bite. Each of them is trying his best to eat more sausages than his opponent. Who will succeed? [b]p2. [/b]The King of the Mountain Dwarves wants to light his underground throne room by placing several torches so that the whole room is lit. The king, being very miserly, wants to use as few torches as possible. What is the least number of torches he could use? (You should show why he can't do it with a smaller number of torches.) This is the shape of the throne room: [img]https://cdn.artofproblemsolving.com/attachments/b/2/719daafd91fc9a11b8e147bb24cb66b7a684e9.png[/img] Also, the walls in all rooms are lined with velvet and do not reflect the light. For example, the picture on the right shows how another room in the castle is partially lit. [img]https://cdn.artofproblemsolving.com/attachments/5/1/0f6971274e8c2ff3f2d0fa484b567ff3d631fb.png[/img] [b]p3.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests. One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor. Now Pooh can tell how many knights are at the table. Can you? [b]p4.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. [b]p5.[/b] There are $40$ piles of stones with an equal number of stones in each. Two players, Ann and Bob, can select any two piles of stones and combine them into one bigger pile, as long as this pile would not contain more than half of all the stones on the table. A player who can’t make a move loses. Ann goes first. Who wins? [u]Round 2[/u] [b]p6.[/b] In a galaxy far, far away, there is a United Galactic Senate with $100$ Senators. Each Senator has no more than three enemies. Tired of their arguments, the Senators want to split into two parties so that each Senator has no more than one enemy in his own party. Prove that they can do this. (Note: If $A$ is an enemy of $B$, then $B$ is an enemy of $A$.) [b]p7.[/b] Harry has a $2012$ by $2012$ chessboard and checkers numbered from $1$ to $2012 \times 2012$. Can he place all the checkers on the chessboard in such a way that whatever row and column Professor Snape picks, Harry will be able to choose three checkers from this row and this column such that the product of the numbers on two of the checkers will be equal to the number on the third? [img]https://cdn.artofproblemsolving.com/attachments/b/3/a87d559b340ceefee485f41c8fe44ae9a59113.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1983 IMO Shortlist, 13

Let $E$ be the set of $1983^3$ points of the space $\mathbb R^3$ all three of whose coordinates are integers between $0$ and $1982$ (including $0$ and $1982$). A coloring of $E$ is a map from $E$ to the set {red, blue}. How many colorings of $E$ are there satisfying the following property: The number of red vertices among the $8$ vertices of any right-angled parallelepiped is a multiple of $4$ ?

2012 HMNT, 7

Find the number of ordered $2012$-tuples of integers $(x_1, x_2, . . . , x_{2012})$, with each integer between $0$ and $2011$ inclusive, such that the sum $x_1 + 2x_2 + 3x_3 + · · · + 2012x_{2012}$ is divisible by $2012$.

2017 India IMO Training Camp, 3

Prove that for any positive integers $a$ and $b$ we have $$a+(-1)^b \sum^a_{m=0} (-1)^{\lfloor{\frac{bm}{a}\rfloor}} \equiv b+(-1)^a \sum^b_{n=0} (-1)^{\lfloor{\frac{an}{b}\rfloor}} \pmod{4}.$$

2024 Abelkonkurransen Finale, 3b

A $2024$-[i]table [/i]is a table with two rows and $2024$ columns containg all the numbers $1,2,\dots,4048$. Such a table is [i]evenly coloured[/i] if exactly half of the numbers in each row, and one number in each column, is coloured red. The [i]red sum[/i] in an evenly coloured $2024$-table is the sum of all the red numbers in the table. Let $N$ be the largest number such that every $2024$-table has an even colouring with red sum $\ge N$. Determine $N$, and find the number of $2024$-tables such that every even colouring of the table has red sum $\le N$.

2023 Moldova EGMO TST, 12

Let there be an integer $n\geq2$. In a chess tournament $n$ players play between each other one game. No game ended in a draw. Show that after the end of the tournament the players can be arranged in a list: $P_1, P_2, P_3,\ldots,P_n$ such that for every $i (1\leq i\leq n-1)$ the player $P_i$ won against player $P_{i+1}$.

2012 ELMO Shortlist, 9

For a set $A$ of integers, define $f(A)=\{x^2+xy+y^2: x,y\in A\}$. Is there a constant $c$ such that for all positive integers $n$, there exists a set $A$ of size $n$ such that $|f(A)|\le cn$? [i]David Yang.[/i]

2006 Iran Team Selection Test, 1

We have $n$ points in the plane, no three on a line. We call $k$ of them good if they form a convex polygon and there is no other point in the convex polygon. Suppose that for a fixed $k$ the number of $k$ good points is $c_k$. Show that the following sum is independent of the structure of points and only depends on $n$ : \[ \sum_{i=3}^n (-1)^i c_i \]

2014 Tournament of Towns., 6

A $3\times 3\times 3$ cube is made of $1\times 1\times 1$ cubes glued together. What is the maximal number of small cubes one can remove so the remaining solid has the following features: 1) Projection of this solid on each face of the original cube is a $3\times 3$ square, 2) The resulting solid remains face-connected (from each small cube one can reach any other small cube along a chain of consecutive cubes with common faces).

2002 Iran Team Selection Test, 5

A school has $n$ students and $k$ classes. Every two students in the same class are friends. For each two different classes, there are two people from these classes that are not friends. Prove that we can divide students into $n-k+1$ parts taht students in each part are not friends.

2000 Belarus Team Selection Test, 1.1

Find the minimal number of cells on a $5\times 7$ board that must be painted so that any cell which is not painted has exactly one neighboring (having a common side) painted cell.

2008 Postal Coaching, 4

Let $n \in N$ and $k$ be such that $1 \le k \le n$. Find the number of ordered $k$-tuples $(a_1, a_2,...,a_k)$ of integers such the $1 \le a_j \le n$, for $1 \le j \le k$ and [u]either [/u] there exist $l,m \in \{1, 2,..., k\}$ such that $l < m$ but $a_l > a_m$ [u]or [/u] there exists $l \in \{1, 2,..., k\}$ such that $a_l - l$ is an odd number.