This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2003 Tournament Of Towns, 2

What least possible number of unit squares $(1\times1)$ must be drawn in order to get a picture of $25 \times 25$-square divided into $625$ of unit squares?

2023 239 Open Mathematical Olympiad, 8

Let $n{}$ and $k{}$ be natural numbers, with $n > 2k$. In the deck of cards, each card contains a subset of the set $\{1, 2, \ldots , n\}$ consisting of at least $k+1$, but no more than $n-k$ elements. Each $m$-element set is written exactly on $m-k$ cards. Is it possible to split these cards into $n- 2k$ stacks so that in each stack all subsets on the cards are different, and any two of them intersect?

2022 Lusophon Mathematical Olympiad, 2

Anselmo and Claudio are playing alternatively a game with fruits in a box. The box initially has $32$ fruits. Anselmo plays first and each turn consists of taking away $1$, $2$ or $3$ fruits from the box or taking away $\frac{2}{3}$ of the fruits from the box (this is only possible when the number of the fruits left in the box is a multiple of $3$). The player that takes away the last fruit from the box wins. Which of these two players has a winning strategy? How should that player play in order to win?

2018 Turkey Team Selection Test, 7

For integers $a, b$, call the lattice point with coordinates $(a,b)$ [b]basic[/b] if $gcd(a,b)=1$. A graph takes the basic points as vertices and the edges are drawn in such way: There is an edge between $(a_1,b_1)$ and $(a_2,b_2)$ if and only if $2a_1=2a_2\in \{b_1-b_2, b_2-b_1\}$ or $2b_1=2b_2\in\{a_1-a_2, a_2-a_1\}$. Some of the edges will be erased, such that the remaining graph is a forest. At least how many edges must be erased to obtain this forest? At least how many trees exist in such a forest?

2023 Princeton University Math Competition, A4 / B6

A sequence of integers $a_1, a_2, \ldots, a_n$ is said to be [i]sub-Fibonacci[/i] if $a_1=a_2=1$ and $a_i \le a_{i-1}+a_{i-2}$ for all $3 \le i \le n.$ How many sub-Fibonacci sequences are there with $10$ terms such that the last two terms are both $20$?

2007 China Western Mathematical Olympiad, 4

A circular disk is partitioned into $ 2n$ equal sectors by $ n$ straight lines through its center. Then, these $ 2n$ sectors are colored in such a way that exactly $ n$ of the sectors are colored in blue, and the other $ n$ sectors are colored in red. We number the red sectors with numbers from $ 1$ to $ n$ in counter-clockwise direction (starting at some of these red sectors), and then we number the blue sectors with numbers from $ 1$ to $ n$ in clockwise direction (starting at some of these blue sectors). Prove that one can find a half-disk which contains sectors numbered with all the numbers from $ 1$ to $ n$ (in some order). (In other words, prove that one can find $ n$ consecutive sectors which are numbered by all numbers $ 1$, $ 2$, ..., $ n$ in some order.) [hide="Problem 8 from CWMO 2007"]$ n$ white and $ n$ black balls are placed at random on the circumference of a circle.Starting from a certain white ball,number all white balls in a clockwise direction by $ 1,2,\dots,n$. Likewise number all black balls by $ 1,2,\dots,n$ in anti-clockwise direction starting from a certain black ball.Prove that there exists a chain of $ n$ balls whose collection of numbering forms the set $ \{1,2,3\dots,n\}$.[/hide]

Russian TST 2015, P3

Given two integers $h \geq 1$ and $p \geq 2$, determine the minimum number of pairs of opponents an $hp$-member parliament may have, if in every partition of the parliament into $h$ houses of $p$ member each, some house contains at least one pair of opponents.

2008 Romania Team Selection Test, 3

Let $ \mathcal{P}$ be a square and let $ n$ be a nonzero positive integer for which we denote by $ f(n)$ the maximum number of elements of a partition of $ \mathcal{P}$ into rectangles such that each line which is parallel to some side of $ \mathcal{P}$ intersects at most $ n$ interiors (of rectangles). Prove that \[ 3 \cdot 2^{n\minus{}1} \minus{} 2 \le f(n) \le 3^n \minus{} 2.\]

2022 Mexico National Olympiad, 2

Tags: 3d , chess , combinatorics
Let $n$ be a positive integer. David has six $n\times n$ chessboards which he arranges in an $n\times n\times n$ cube. Two cells are "aligned" if they can be connected by a path of cells $a=c_1,\ c_2,\ \dots,\ c_m=b$ such that all consecutive cells in the path share a side, and the sides that the cell $c_i$ shares with its neighbors are on opposite sides of the square for $i=2,\ 3,\ \dots\ m-1$. Two towers attack each other if the cells they occupy are aligned. What is the maximum amount of towers he can place on the board such that no two towers attack each other?

2016 Dutch Mathematical Olympiad, 5

Bas has coloured each of the positive integers. He had several colours at his disposal. His colouring satis es the following requirements: • each odd integer is coloured blue, • each integer $n$ has the same colour as $4n$, • each integer $n$ has the same colour as at least one of the integers $n+2$ and $n + 4$. Prove that Bas has coloured all integers blue.

2022 China Team Selection Test, 2

Let $p$ be a prime, $A$ is an infinite set of integers. Prove that there is a subset $B$ of $A$ with $2p-2$ elements, such that the arithmetic mean of any pairwise distinct $p$ elements in $B$ does not belong to $A$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.2

The set of all finite ordered sets of $0$ and $ 1$ is somehow partitioned into two disjoint classes. Prove that any infinite sequence of $0$ and $1$ can be cut into non-intersecting finite parts such that all of these parts (except perhaps the first) belong to the same class.

2012 Dutch IMO TST, 4

Let $n$ be a positive integer divisible by $4$. We consider the permutations $(a_1, a_2,...,a_n)$ of $(1,2,..., n)$ having the following property: for each j we have $a_i + j = n + 1$ where $i = a_j$ . Prove that there are exactly $\frac{ (\frac12 n)!}{(\frac14 n)!}$ such permutations.

2019 Dutch BxMO TST, 5

In a country, there are $2018$ cities, some of which are connected by roads. Each city is connected to at least three other cities. It is possible to travel from any city to any other city using one or more roads. For each pair of cities, consider the shortest route between these two cities. What is the greatest number of roads that can be on such a shortest route?

MMPC Part II 1958 - 95, 1974

[b]p1.[/b] Let $S$ be the sum of the $99$ terms: $$(\sqrt1 + \sqrt2)^{-1},(\sqrt2 + \sqrt3)^{-1}, (\sqrt3 + \sqrt4)^{-1},..., (\sqrt{99} + \sqrt{100})^{-1}.$$ Prove that $S$ is an integer. [b]p2.[/b] Determine all pairs of positive integers $x$ and $y$ for which $N=x^4+4y^4$ is a prime. (Your work should indicate why no other solutions are possible.) [b]p3.[/b] Let $w,x,y,z$ be arbitrary positive real numbers. Prove each inequality: (a) $xy \le \left(\frac{x+y}{2}\right)^2$ (b) $wxyz \le \left(\frac{w+x+y+z}{4}\right)^4$ (c) $xyz \le \left(\frac{x+y+z}{3}\right)^3$ [b]p4.[/b] Twelve points $P_1$,$P_2$, $...$,$P_{12}$ are equally spaaed on a circle, as shown. Prove: that the chords $\overline{P_1P_9}$, $\overline{P_4P_{12}}$ and $\overline{P_2P_{11}}$ have a point in common. [img]https://cdn.artofproblemsolving.com/attachments/d/4/2eb343fd1f9238ebcc6137f7c84a5f621eb277.png[/img] [b]p5.[/b] Two very busy men, $A$ and $B$, who wish to confer, agree to appear at a designated place on a certain day, but no earlier than noon and no later than $12:15$ p.m. If necessary, $A$ will wait $6$ minutes for $B$ to arrive, while $B$ will wait $9$ minutes for $A$ to arrive but neither can stay past $12:15$ p.m. Express as a percent their chance of meeting. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1983 Kurschak Competition, 3

Given are $n + 1$ points $P_1, P_2,..., P_n$ and $Q$ in the plane, no three collinear. For any two different points $P_i$ and $P_j$ , there is a point $P_k$ such that the point $Q$ lies inside the triangle $P_iP_jP_k$. Prove that $n$ is an odd number.

2019 Kyiv Mathematical Festival, 2

There were $n\ge2$ teams in a tournament. Each team played against every other team once without draws. A team gets 0 points for a loss and gets as many points for a win as its current number of losses. For which $n$ all the teams could end up with the same number of points?

2017 Ukraine Team Selection Test, 3

Andriyko has rectangle desk and a lot of stripes that lie parallel to sides of the desk. For every pair of stripes we can say that first of them is under second one. In desired configuration for every four stripes such that two of them are parallel to one side of the desk and two others are parallel to other side, one of them is under two other stripes that lie perpendicular to it. Prove that Andriyko can put stripes one by one such way that every next stripe lie upper than previous and get desired configuration. [i]Proposed by Denys Smirnov[/i]

2023 SG Originals, Q4

Let $k$ be a positive integer. An arrangement of finitely many open intervals in $R$ is called [i]good [/i] if for any of the intervals the number of other intervals which intersect with it is a nonzero multiple of $k$. Find the maximum positive integer $n$ (as a function of $k$) for which there is no good arrangement with $n$ intervals

2017 Bosnia and Herzegovina EGMO TST, 1

It is given sequence wih length of $2017$ which consists of first $2017$ positive integers in arbitrary order (every number occus exactly once). Let us consider a first term from sequence, let it be $k$. From given sequence we form a new sequence of length 2017, such that first $k$ elements of new sequence are same as first $k$ elements of original sequence, but in reverse order while other elements stay unchanged. Prove that if we continue transforming a sequence, eventually we will have sequence with first element $1$.

2014 Bosnia Herzegovina Team Selection Test, 2

It is given regular $n$-sided polygon, $n \geq 6$. How many triangles they are inside the polygon such that all of their sides are formed by diagonals of polygon and their vertices are vertices of polygon?

2021 Thailand TSTST, 2

Let $d\geq 1$ and $n\geq 0$ be integers. Find the number of ways to write down a nonnegative integer in each square of a $d\times d$ grid such that the numbers in any set of $d$ squares, no two in the same row or column, sum to $n$.

2011 Greece JBMO TST, 2

On every side of a square $ABCD$, we consider three points different (to each other). a) Find the number of line segments defined with endpoints those points , that do not lie on sides of the square. b) If there are no three of the previous line segments passing through the same point, find how many of the intersection points of those segmens line in the interior of the square.

1962 Leningrad Math Olympiad, grade 8

[b]8.1[/b] Four circles are placed on planes so that each one touches the other two externally. Prove that the points of tangency lie on one circle. [img]https://cdn.artofproblemsolving.com/attachments/9/8/883a82fb568954b09a4499a955372e2492dbb8.png[/img] [b]8.2[/b]. Let the integers $a$ and $b$ be represented as $x^2-5y^2$, where $x$ and $y$ are integer numbers. Prove that the number $ab$ can also be presented in this form. [b]8.3[/b] Solve the equation $x(x + d)(x + 2d)(x + 3d) = a$. [b]8.4 / 9.1[/b] Let $a+b+c=1$, $m+n+p=1 $. Prove that $$-1 \le am + bn + cp \le 1 $$ [b]8.5[/b] Inscribe a triangle with the largest area in a semicircle. [b]8.6[/b] Three circles of the same radius intersect at one point. Prove that the other three points intersections lie on a circle of the same radius. [img]https://cdn.artofproblemsolving.com/attachments/4/7/014952f2dcf0349d54b07230e45a42c242a49d.png[/img] [b]8.7[/b] Find the circle of smallest radius that contains a given triangle. [b]8.8 / 9.2[/b] Given a polynomial $$x^{2n} +a_1x^{2n-2} + a_2x^{2n-4} + ... + a_{n-1}x^2 + a_n,$$ which is divisible by $ x-1$. Prove that it is divisible by $x^2-1$. [b]8.9[/b] Prove that for any prime number $p$ other than $2$ and from $5$, there is a natural number $k$ such that only ones are involved in the decimal notation of the number $pk$.. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983459_1962_leningrad_math_olympiad]here[/url].

2013 QEDMO 13th or 12th, 1

A lightly damaged rook moves around on a $m \times n$ chessboard by taking turns moves to a horizontal or vertical field. For which $m$ and $n$, is it possible for him to have visited each field exactly once? The starting field counts as visited, squares skipped during a move, however, are not.