Found problems: 14842
2021 China Second Round A2, 2
Find the maximum value of $M$, if you choose $10$ different real numbers randomly in $[1,M]$, there must be $3$ numbers $a<b<c$, satisfy $ax^2+bx+c=0$ has no real root.
2007 Romania Team Selection Test, 4
Let $S$ be the set of $n$-uples $\left( x_{1}, x_{2}, \ldots, x_{n}\right)$ such that $x_{i}\in \{ 0, 1 \}$ for all $i \in \overline{1,n}$, where $n \geq 3$. Let $M(n)$ be the smallest integer with the property that any subset of $S$ with at least $M(n)$ elements contains at least three $n$-uples \[\left( x_{1}, \ldots, x_{n}\right), \, \left( y_{1}, \ldots, y_{n}\right), \, \left( z_{1}, \ldots, z_{n}\right) \] such that
\[\sum_{i=1}^{n}\left( x_{i}-y_{i}\right)^{2}= \sum_{i=1}^{n}\left( y_{i}-z_{i}\right)^{2}= \sum_{i=1}^{n}\left( z_{i}-x_{i}\right)^{2}. \]
(a) Prove that $M(n) \leq \left\lfloor \frac{2^{n+1}}{n}\right\rfloor+1$.
(b) Compute $M(3)$ and $M(4)$.
2009 Argentina National Olympiad, 1
$2009$ points have been marked on a circle. Lucía colors them with $7$ different colors of her choice. Then Ivan can join three points of the same color, thus forming monochrome triangles. Triangles cannot have points in common; not even vertices in common. Ivan's goal is to draw as many monochrome triangles as possible. Lucía's objective is to prevent Iván's task as much as possible through a good choice of colouring. How many monochrome triangles will Ivan get if they both do their homework to the best of their ability?
1995 Balkan MO, 4
Let $n$ be a positive integer and $\mathcal S$ be the set of points $(x, y)$ with $x, y \in \{1, 2, \ldots , n\}$. Let $\mathcal T$ be the set of all squares with vertices in the set $\mathcal S$. We denote by $a_k$ ($k \geq 0$) the number of (unordered) pairs of points for which there are exactly $k$ squares in $\mathcal T$ having these two points as vertices. Prove that $a_0 = a_2 + 2a_3$.
[i]Yugoslavia[/i]
VMEO II 2005, 9
On a board with $64$ ($8 \times 8$) squares, find a way to arrange $9$ queens and $ 1$ king so that every queen cannot capture another queen.
1947 Moscow Mathematical Olympiad, 124
a) Prove that of $5$ consecutive positive integers one that is relatively prime with the other $4$ can always be selected.
b) Prove that of $10$ consecutive positive integers one that is relatively prime with the other $9$ can always be selected.
2021 Peru EGMO TST, 7
Let $x_0,x_1,\dots, x_{n-1}$ be real numbers such that $0<|x_0|<|x_1|<\dots<|x_{n-1}|$. We will write the sum of the elements of each one of the $2^n$ subsets of $\{x_0,x_1,\dots,x_{n-1}\}$ in a paper. Prove that the $2^n$ written numbers are consecutive elements of a arithmetic progression if and only if the ratios
$$|\frac{x_i}{x_j}|, 0\leq j<i\leq n-1$$
are equal(s) to the ratio(s) obtained with the numbers $2^0,2^1,\dots,2^{n-1}$.
Note: The sum of the elements of the empty set is $0$.
2019 Swedish Mathematical Competition, 3
There are two bowls on a table, one white and one black. In the white bowl there $2019$ balls.
Players $A$ and $B$ play a game where they make every other move ($A$ begins).
One move consists is
$\bullet$ to move one or your balls from one bowl to the other, or
$\bullet$ to remove a ball from the white bowl,
with the condition that the resulting position (that is, the number of bullets in the two bowls) have not occurred before. The player who has no valid move to make loses.
Can any of the players be sure to win? If so, which one?
2021 Durer Math Competition (First Round), 5
$21$ bandits live in the city of Warmridge, each of them having some enemies among the others. Initially each bandit has $240$ bullets, and duels with all of his enemies. Every bandit distributes his bullets evenly between his enemies, this means that he takes the same number of bullets to each of his duels, and uses each of his bullets in only one duel. In case the number of his bullets is not divisible by the number of his enemies, he takes as many bullets to each duel as possible, but takes the same number of bullets to every duel, so it is possible that in the end the bandit will have some remaining bullets.
Shooting is banned in the city, therefore a duel consists only of comparing the number of bullets in the guns of the opponents, and the winner is whoever has more bullets. After the duel the sheriff takes the bullets of the winner and as an act of protest the loser shoots all of his bullets into the air. What is the largest possible number of bullets the sheriff can have after all of the duels have ended?
Being someones enemy is mutual. If two opponents have the same number of bullets in their guns during a duel, then the sheriff takes the bullets of the bandit who has the wider hat among them.
Example: If a bandit has $13$ enemies then he takes $18$ bullets with himself to each duel, and they will have $6$ leftover bullets after finishing all their duels.
2021 Purple Comet Problems, 18
Three red books, three white books, and three blue books are randomly stacked to form three piles of three books each. The probability that no book is the same color as the book immediately on top of it is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
MMPC Part II 1958 - 95, 1961
[b]p1.[/b] $ x,y,z$ are required to be non-negative whole numbers, find all solutions to the pair of equations $$x+y+z=40$$
$$2x + 4y + 17z = 301.$$
[b]p2.[/b] Let $P$ be a point lying between the sides of an acute angle whose vertex is $O$. Let $A,B$ be the intersections of a line passing through $P$ with the sides of the angle. Prove that the triangle $AOB$ has minimum area when $P$ bisects the line segment $AB$.
[b]p3.[/b] Find all values of $x$ for which $|3x-2|+|3x+1|=3$.
[b]p4.[/b] Prove that $x^2+y^2+z^2$ cannot be factored in the form $$(ax + by + cz) (dx + ey + fz),$$
$a, b, c, d, e, f$ real.
[b]p5.[/b] Let $f(x)$ be a continuous function for all real values of $x$ such that $f(a)\le f(b)$ whenever $a\le b$. Prove that, for every real number $r$, the equation $$x + f(x) = r$$ has exactly one solution.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2019 Saint Petersburg Mathematical Olympiad, 2
Every two of the $n$ cities of Ruritania are connected by a direct flight of one from two airlines. Promonopoly Committee wants at least $k$ flights performed by one company. To do this, he can at least every day to choose any three cities and change the ownership of the three flights connecting these cities each other (that is, to take each of these flights from a company that performs it, and pass the other). What is the largest $k$ committee knowingly will be able to achieve its goal in no time, no matter how the flights are distributed hour?
2023 Belarus - Iran Friendly Competition, 3
In a football tournament $2n$ teams play in a round. Every round consists of $n$ pairs
of teams that haven’t played with each other yet. Every round’s schedule is determined before the
round is held. Find the minimal positive integer $k$ such that the following situation is possible: after
$k$ rounds it’s impossible to schedule the next round.
V Soros Olympiad 1998 - 99 (Russia), grade8
[b]p1.[/b] Two proper ordinary fractions are given. The first has a numerator that is $5$ less than the denominator, and the second has a numerator that is $1998$ less than the denominator. Can their sum have a numerator greater than its denominator?
[b]p2.[/b] On New Year's Eve, geraniums, crocuses and cacti stood in a row (from left to right) on the windowsill. Every morning, Masha, wiping off the dust, swaps the places of the flower on the right and the flower in the center. During the day, Tanya, while watering flowers, swaps places between the one in the center and the one on the left. In what order will the flowers be in $365$ days on the next New Year's Eve?
[b]p3.[/b] The number $x$ is such that $15\%$ of it and $33\%$ of it are positive integers. What is the smallest number $x$ (not necessarily an integer!) with this property?
[b]p4.[/b] In the quadrilateral $ABCD$, the extensions of opposite sides $AB$ and $CD$ intersect at an angle of $20^o$; the extensions of opposite sides $BC$ and $AD$ also intersect at an angle of $20^o$. Prove that two angles in this quadrilateral are equal and the other two differ by $40^o$.
[b]p5.[/b] Given two positive integers $a$ and $b$. Prove that $a^ab^b\ge a^ab^a.$
[b]p6.[/b] The square is divided by straight lines into $25$ rectangles (fig.). The areas of some of They are indicated in the figure (not to scale). Find the area of the rectangle marked with a question mark.
[img]https://cdn.artofproblemsolving.com/attachments/0/9/591c93421067123d50382744f9d28357acf83a.png[/img]
[b]p7.[/b] A radio-controlled toy leaves a certain point. It moves in a straight line, and on command can turn left exactly $ 17^o$ (relative to the previous direction of movement). What is the smallest number of commands required for the toy to pass through the starting point again?
[b]p8.[/b] In expression $$(a-b+c)(d+e+f)(g-h-k)(\ell +m- n)(p + q)$$ opened the brackets. How many members will there be? How many of them will be preceded by a minus sign?
[b]p9.[/b] In some countries they decided to hold popular elections of the government. Two-thirds of voters in this country are urban and one-third are rural. The President must propose for approval a draft government of $100$ people. It is known that the same percentage of urban (rural) residents will vote for the project as there are people from the city (rural) in the proposed project. What is the smallest number of city residents that must be included in the draft government so that more than half of the voters vote for it?
[b]p10.[/b] Vasya and Petya play such a game on a $10 \times 10 board$. Vasya has many squares the size of one cell, Petya has many corners of three cells (fig.). They are walking one by one - first Vasya puts his square on the board, then Petya puts his corner, then Vasya puts another square, etc. (You cannot place pieces on top of others.) The one who cannot make the next move loses. Vasya claims that he can always win, no matter how hard Petya tries. Is Vasya right?
[img]https://cdn.artofproblemsolving.com/attachments/f/1/3ddec7826ff6eb92471855322e3b9f01357116.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
1977 All Soviet Union Mathematical Olympiad, 246
There are $1000$ tickets with the numbers $000, 001, ... , 999$, and $100$ boxes with the numbers $00, 01, ... , 99$. You may put a ticket in a box, if you can obtain the box number from the ticket number by deleting one digit. Prove that:
a) You can put all the tickets in $50$ boxes;
b) $40$ boxes is not enough for that;
c) it is impossible to use less than $50$ boxes.
d) Consider $10000$ $4$-digit tickets, and you are allowed to delete two digits. Prove that $34$ boxes is enough for storing all the tickets.
e) What is the minimal used boxes set in the case of $k$-digit tickets?
2011 ELMO Shortlist, 1
Let $S$ be a finite set, and let $F$ be a family of subsets of $S$ such that
a) If $A\subseteq S$, then $A\in F$ if and only if $S\setminus A\notin F$;
b) If $A\subseteq B\subseteq S$ and $B\in F$, then $A\in F$.
Determine if there must exist a function $f:S\to\mathbb{R}$ such that for every $A\subseteq S$, $A\in F$ if and only if
\[\sum_{s\in A}f(s)<\sum_{s\in S\setminus A}f(s).\]
[i]Evan O'Dorney.[/i]
Russian TST 2016, P2
An Olympiad has 99 tasks. Several participants of the Olympiad are standing in a circle. They all solved different sets of tasks. Any two participants standing side by side do not have a common solved problem, but have a common unsolved one. Prove that the number of participants in the circle does not exceed \[2^{99}-\binom{99}{50}.\]
MMPC Part II 1996 - 2019, 2004
[b]p1.[/b] The following figure represents a rectangular piece of paper $ABCD$ whose dimensions are $4$ inches by $3$ inches. When the paper is folded along the line segment $EF$, the corners $A$ and $C$ coincide.
(a) Find the length of segment $EF$.
(b) Extend $AD$ and $EF$ so they meet at $G$. Find the area of the triangle $\vartriangle AEG$.
[img]https://cdn.artofproblemsolving.com/attachments/d/4/e8844fd37b3b8163f62fcda1300c8d63221f51.png[/img]
[b]p2.[/b] (a) Let $p$ be a prime number. If $a, b, c$, and $d$ are distinct integers such that the equation $(x -a)(x - b)(x - c)(x - d) - p^2 = 0$ has an integer solution $r$, show that $(r - a) + (r - b) + (r - c) + (r - d) = 0$.
(b) Show that $r$ must be a double root of the equation $(x - a)(x - b)(x - c)(x - d) - p^2 = 0$.
[b]p3.[/b] If $\sin x + \sin y + \sin z = 0$ and $\cos x + \cos y + \cos z = 0$, prove the following statements.
(a) $\cos (x - y) = -\frac12$
(b) $\cos (\theta - x) + \cos(\theta - y) + \cos (\theta - z) = 0$, for any angle $\theta$.
(c) $\sin^2 x + \sin^2 y + \sin^2 z =\frac32$
[b]p4.[/b] Let $|A|$ denote the number of elements in the set $A$.
(a) Construct an infinite collection $\{A_i\}$ of infinite subsets of the set of natural numbers such that $|A_i \cap A_j | = 0$ for $i \ne j$.
(b) Construct an infinite collection $\{B_i\}$ of infinite subsets of the set of natural numbers such that $|B_i \cap B_j |$ gives a distinct integer for every pair of $i$ and $j$, $i \ne j$.
[b]p5.[/b] Consider the equation $x^4 + y^4 = z^5$.
(a) Show that the equation has a solution where $x, y$, and $z$ are positive integers.
(b) Show that the equation has infinitely many solutions where $x, y$, and $z$ are positive integers.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022/2023 Tournament of Towns, P1
Is it possible to arrange $36$ distinct numbers in the cells of a $6 \times 6$ table, so that in each $1\times 5$ rectangle (both vertical and horizontal) the sum of the numbers equals $2022$ or $2023$?
2020 Regional Olympiad of Mexico Southeast, 3
Bokos tribus have $2021$ closed chests, we know that every chest have some amount of rupias and some amount of diamonts. They are going to do a deal with Link, that consits that Link will stay with a amount of chests and Bokos with the rest. Before opening the chests, Link has to say the amount of chest that he will stay with. After this the chests open and Link has to choose the chests with the amount that he previously said. Link doesn´t want to make Bokos angry so he wants to say the smallest number of chest that he will stay with, but guaranteeing that he stay with at least with the half of diamonts, and at least the half of the rupias. What number does Link needs to say?
2011 USA TSTST, 9
Let $n$ be a positive integer. Suppose we are given $2^n+1$ distinct sets, each containing finitely many objects. Place each set into one of two categories, the red sets and the blue sets, so that there is at least one set in each category. We define the [i]symmetric difference[/i] of two sets as the set of objects belonging to exactly one of the two sets. Prove that there are at least $2^n$ different sets which can be obtained as the symmetric difference of a red set and a blue set.
2002 German National Olympiad, 2
Minimal distance of a finite set of different points in space is length of the shortest segment, whose both ends belong to this set and segment has length greater than $0$.
a) Prove there exist set of $8$ points on sphere with radius $R$, whose minimal distance is greater than $1,15R$.
b) Does there exist set of $8$ points on sphere with radius $R$, whose minimal distance is greater than $1,2R$?
2006 Tournament of Towns, 5
A square is dissected into $n$ congruent non-convex polygons whose sides are parallel to the sides of the square, and no two of these polygons are parallel translates of each other. What is the maximum value of $n$? (4)
2015 Gulf Math Olympiad, 3
We have a large supply of black, white, red and green hats.
And we want to give $8$ of these hats to $8$ students that are sitting around a round table.
Find the number of ways of doing that in each of these cases (assuming for the purposes of this problem that students will notchange their places, and that hats of the same color are identical)
a) Each hat to be used must be either red or green.
b) Exactly two hats of each color are to be used
c) Exactly two hats of each color are to be used, and every two hats of the same color are to be given to two adjacent students.
d) Exactly two hats of each color are to be used, and no two hats of the same color are to be given to two adjacent students.
e) There are no restrictions on the number of hats of each color that are to be used, but no two hats of the same color are to be given to two adjacent students.
2002 Estonia National Olympiad, 5
There were $n> 1$ aborigines living on an island, each of them telling only the truth or only lying, and each having at least one friend among the others. The new governor asked each aborigine whether there are more truthful aborigines or liars among his friends, or an equal number of both. Each aborigine answered that there are more liars than truthful aborigines among his friends. The governor then ordered one of the aborigines to be executed for being a liar and asked each of the remaining $n- 1$ aborigines the same question again. This time each aborigine answered that there are more truthful aborigines than liars among his friends. Determine whether the executed aborigine was truthful or a liar, and whether there are more truthful aborigines or liars remaining on the island.