This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2021 Junior Balkan Team Selection Tests - Romania, P4

Let $n\geq 2$ be a positive integer. On an $n\times n$ board, $n$ rooks are placed in such a manner that no two attack each other. All rooks move at the same time and are only allowed to move in a square adjacent to the one in which they are located. Determine all the values ​​of $n$ for which there is a placement of the rooks so that, after a move, the rooks still do not attack each other. [i]Note: Two squares are adjacent if they share a common side.[/i]

2007 Bosnia Herzegovina Team Selection Test, 6

The set $A$ has exactly $n>4$ elements. Ann chooses $n+1$ distinct subsets of $A$, such that every subset has exactly $3$ elements. Prove that there exist two subsets chosen by Ann which have exactly one common element.

2021 Junior Balkan Team Selection Tests - Romania, P1

On a board, Ana and Bob start writing $0$s and $1$s alternatively until each of them has written $2021$ digits. Ana starts this procedure and each of them always adds a digit to the right of the already existing ones. Ana wins the game if, after they stop writing, the resulting number (in binary) can be written as the sum of two squares. Otherwise, Bob wins. Determine who has a winning strategy.

1995 Polish MO Finals, 1

How many subsets of $\{1, 2, ... , 2n\}$ do not contain two numbers with sum $2n+1$?

1999 All-Russian Olympiad Regional Round, 10.7

Each voter in an election puts $n$ names of candidates on the ballot. There are $n + 1$ at the polling station urn. After the elections it turned out that each ballot box contained at least at least one ballot, for every choice of the $(n + 1)$-th ballot, one from each ballot box, there is a candidate whose surname appears in each of the selected ballots. Prove that in at least one ballot box all ballots contain the name of the same candidate.

2022 HMNT, 10

There are 21 competitors with distinct skill levels numbered 1, 2,..., 21. They participate in a ping-pong tournament as follows. First, a random competitor is chosen to be "active", while the rest are "inactive." Every round, a random inactive competitor is chosen to play against the current active one. The player with the higher skill will win and become (or remain) active, while the loser will be eliminated from the tournament. The tournament lasts for 20 rounds, after which there will only be one player remaining. Alice is the competitor with skill 11. What is the expected number of games that she will get to play?

1988 China Team Selection Test, 3

A polygon $\prod$ is given in the $OXY$ plane and its area exceeds $n.$ Prove that there exist $n+1$ points $P_{1}(x_1, y_1), P_{2}(x_2, y_2), \ldots, P_{n+1}(x_{n+1}, y_{n+1})$ in $\prod$ such that $\forall i,j \in \{1, 2, \ldots, n+1\}$, $x_j - x_i$ and $y_j - y_i$ are all integers.

2011 Argentina National Olympiad Level 2, 4

Each face of a regular tetrahedron with edge length $2011$ is divided into $2011^2$ equilateral triangles of side length $1$, created by drawing lines parallel to each edge. Bruno and Mariano take turns marking one of the unit triangles. Except for the first move, every triangle marked must share at least one point with the triangle marked in the previous move. Bruno plays first. The game ends when a player cannot make a move, and that player loses. Determine which of the two players has a winning strategy and describe the strategy.

Mid-Michigan MO, Grades 5-6, 2010

[b]p1.[/b] Ben and his dog are walking on a path around a lake. The path is a loop $500$ meters around. Suddenly the dog runs away with velocity $10$ km/hour. Ben runs after it with velocity $8$ km/hour. At the moment when the dog is $250$ meters ahead of him, Ben turns around and runs at the same speed in the opposite direction until he meets the dog. For how many minutes does Ben run? [b]p2.[/b] The six interior angles in two triangles are measured. One triangle is obtuse (i.e. has an angle larger than $90^o$) and the other is acute (all angles less than $90^o$). Four angles measure $120^o$, $80^o$, $55^o$ and $10^o$. What is the measure of the smallest angle of the acute triangle? [b]p3.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region? [img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img] [b]p4.[/b] Two three-digit whole numbers are called relatives if they are not the same, but are written using the same triple of digits. For instance, $244$ and $424$ are relatives. What is the minimal number of relatives that a three-digit whole number can have if the sum of its digits is $10$? [b]p5.[/b] Three girls, Ann, Kelly, and Kathy came to a birthday party. One of the girls wore a red dress, another wore a blue dress, and the last wore a white dress. When asked the next day, one girl said that Kelly wore a red dress, another said that Ann did not wear a red dress, the last said that Kathy did not wear a blue dress. One of the girls was truthful, while the other two lied. Which statement was true? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1987 All Soviet Union Mathematical Olympiad, 461

All the faces of a convex polyhedron are the triangles. Prove that it is possible to paint all its edges in red and blue colour in such a way, that it is possible to move from the arbitrary vertex to every vertex along the blue edges only and along the red edges only.

2003 Tuymaada Olympiad, 3

Alphabet $A$ contains $n$ letters. $S$ is a set of words of finite length composed of letters of $A$. It is known that every infinite sequence of letters of $A$ begins with one and only one word of $S$. Prove that the set $S$ is finite. [i]Proposed by F. Bakharev[/i]

2021 Greece Junior Math Olympiad, 2

Anna and Basilis play a game writing numbers on a board as follows: The two players play in turns and if in the board is written the positive integer $n$, the player whose turn is chooses a prime divisor $p$ of $n$ and writes the numbers $n+p$. In the board, is written at the start number $2$ and Anna plays first. The game is won by whom who shall be first able to write a number bigger or equal to $31$. Find who player has a winning strategy, that is who may writing the appropriate numbers may win the game no matter how the other player plays.

2010 Korea - Final Round, 5

On a circular table are sitting $ 2n$ people, equally spaced in between. $ m$ cookies are given to these people, and they give cookies to their neighbors according to the following rule. (i) One may give cookies only to people adjacent to himself. (ii) In order to give a cookie to one's neighbor, one must eat a cookie. Select arbitrarily a person $ A$ sitting on the table. Find the minimum value $ m$ such that there is a strategy in which $ A$ can eventually receive a cookie, independent of the distribution of cookies at the beginning.

2013 European Mathematical Cup, 3

We call a sequence of $n$ digits one or zero a code. Subsequence of a code is a palindrome if it is the same after we reverse the order of its digits. A palindrome is called nice if its digits occur consecutively in the code. (Code $(1101)$ contains $10$ palindromes, of which $6$ are nice.) a) What is the least number of palindromes in a code? b) What is the least number of nice palindromes in a code?

1966 Leningrad Math Olympiad, grade 6

[b]6.1[/b] Which number is greater $$\underbrace{1000. . . 001}_{1965\, zeroes} / \underbrace{1000 . . . 001}_{1966\, zeroes} \,\,\, or \,\,\, \underbrace{1000. . . 001}_{1966\, zeroes} / \underbrace{1000 . . . 001}_{1967\, zeroes} \,\,?$$ [b]6.2[/b] $30$ teams participate in the football championship. Prove that at any moment there will be two teams that have played at this point the same number of matches. [b]6.3./ 7.1 [/b] All integers from $1$ to $1966$ are written on the board. Allowed is to erase any two numbers by writing their difference instead. Prove that repeating such an operation many times cannot ensure that There are only zeros left on the board. [b]6.4 / 7.5[/b] Black paint was sprayed onto a white surface. Prove that there are three points of the same color lying on the same line, and so, that one of the points lies in the middle between the other two. [b]6.5[/b] In a chess tournament, there are more than three chess players, and each player plays each other the same number of times. There were $26$ rounds in the tournament. After the $13$th round, one of the participants discovered that he had an odd number points, and each of the other participants has an even number of points. How many chess players participated in the tournament? PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988082_1966_leningrad_math_olympiad]here[/url].

2016 Saudi Arabia BMO TST, 4

Given six three-element subsets of the set $X$ with at least $5$ elements, show that it is possible to color the elements of $X$ in two colors such that none of the given subsets is all in one color.

2014 Tuymaada Olympiad, 8

There are $m$ villages on the left bank of the Lena, $n$ villages on the right bank and one village on an island. It is known that $(m+1,n+1)>1$. Every two villages separated by water are connected by ferry with positive integral number. The inhabitants of each village say that all the ferries operating in their village have different numbers and these numbers form a segment of the series of the integers. Prove that at least some of them are wrong. [i](K. Kokhas)[/i]

2021 Indonesia MO, 1

On the whiteboard, the numbers are written sequentially: $1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9$. Andi has to paste a $+$ (plus) sign or $-$ (minus) sign in between every two successive numbers, and compute the value. Determine the least odd positive integer that Andi can't get from this process.

2016 Greece Team Selection Test, 4

For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.

2014 India Regional Mathematical Olympiad, 6

Suppose $n$ is odd and each square of an $n \times n$ grid is arbitrarily filled with either by $1$ or by $-1$. Let $r_j$ and $c_k$ denote the product of all numbers in $j$-th row and $k$-th column respectively, $1 \le j, k \le n$. Prove that $$\sum_{j=1}^{n} r_j+ \sum_{k=1}^{n} c_k\ne 0$$

2022 Durer Math Competition Finals, 13

Write some positive integers in the following table such that $\cdot$ there is at most one number in each field $\cdot$ each number is equal to how many numbers there are in edge-adjacent fields, $\cdot$ edge-adjacent fields cannot have equal numbers. What is the sum of numbers in the resulting table? [img]https://cdn.artofproblemsolving.com/attachments/a/9/63a9c38762a4c895688fff049ed08c96b2c22c.png[/img]

Gheorghe Țițeica 2024, P4

A factorization of a positive integers is a way of writing it as a product of positive integers greater than $1$. Two factorizations are considered the same if they only differ in the order of terms in the product. For instance, $18$ has $4$ different factorizations: $18, 2\cdot 9, 3\cdot 6$ and $ 2\cdot 3\cdot 3$. For a positive integer $n$ we denote by $f(n)$ the number of distinct factorizations of $n$. By convention $f(1)=1$. Prove that $f(n)\leq n$ for all positive integers $n$.

2024 European Mathematical Cup, 4

Let $\mathcal{F}$ be a family of (distinct) subsets of the set $\{1,2,\dots,n\}$ such that for all $A$, $B\in \mathcal{F}$,we have that $A^C\cup B\in \mathcal{F}$, where $A^C$ is the set of all members of ${1,2,\dots,n}$ that are not in $A$. Prove that every $k\in {1,2,\dots,n}$ appears in at least half of the sets in $\mathcal{F}$. [i]Stijn Cambie, Mohammad Javad Moghaddas Mehr[/i]

2013 Saudi Arabia GMO TST, 2

Find all values of $n$ for which there exists a convex cyclic non-regular polygon with $n$ vertices such that the measures of all its internal angles are equal.

2007 Germany Team Selection Test, 2

An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that: $ (i)$ Each player plays in each round, and every two players meet at most once. $ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$. Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament. [i]Proposed by Carlos di Fiore, Argentina[/i]