This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

1970 Kurschak Competition, 3

n points are taken in the plane, no three collinear. Some of the line segments between the points are painted red and some are painted blue, so that between any two points there is a unique path along colored edges. Show that the uncolored edges can be painted (each edge either red or blue) so that all triangles have an odd number of red sides.

2006 German National Olympiad, 3

For which positive integer n can you color the numbers 1,2...2n with n colors, such that every color is used twice and the numbers 1,2,3...n occur as difference of two numbers of the same color exatly once.

2009 Tournament Of Towns, 3

Each square of a $10\times 10$ board contains a chip. One may choose a diagonal containing an even number of chips and remove any chip from it. Find the maximal number of chips that can be removed from the board by these operations.

2024 Bulgarian Autumn Math Competition, 8.4

Let $n$ be a positive integers. Equilateral triangle with sides of length $n$ is split into equilateral triangles with side lengths $1$, forming a triangular lattice. Call an equilateral triangle with vertices in the lattice "important". Let $p_k$ be the number of unordered pairs of vertices in the lattice which participate in exactly $k$ important triangles. Find (as a function of $n$) (a) $p_0+p_1+p_2$ (b) $p_1+2p_2$

2012 France Team Selection Test, 1

Let $n$ and $k$ be two positive integers. Consider a group of $k$ people such that, for each group of $n$ people, there is a $(n+1)$-th person that knows them all (if $A$ knows $B$ then $B$ knows $A$). 1) If $k=2n+1$, prove that there exists a person who knows all others. 2) If $k=2n+2$, give an example of such a group in which no-one knows all others.

2009 Mid-Michigan MO, 5-6

[b]p1.[/b] Anne purchased yesterday at WalMart in Puerto Rico $6$ identical notebooks, $8$ identical pens and $7$ identical erasers. Anne remembers that each eraser costs $73$ cents. She did not buy anything else. Anne told her mother that she spent $12$ dollars and $76$ cents at Walmart. Can she be right? Note that in Puerto Rico there is no sales tax. [b]p2.[/b] Two men ski one after the other first in a flat field and then uphill. In the field the men run with the same velocity $12$ kilometers/hour. Uphill their velocity drops to $8$ kilometers/hour. When both skiers enter the uphill trail segment the distance between them is $300$ meters less than the initial distance in the field. What was the initial distance between skiers? (There are $1000$ meters in 1 kilometer.) [b]p3.[/b] In the equality $** + **** = ****$ all the digits are replaced by $*$. Restore the equality if it is known that any numbers in the equality does not change if we write all its digits in the opposite order. [b]p4.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies. Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!” The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!” A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!” Then a stripped polyleg started: ”-None of you has $8$ legs. Only I have 8 legs!” Which polyleg has exactly $8$ legs? [b]p5.[/b] Cut the figure shown below in two equal pieces. (Both the area and the form of the pieces must be the same.) [img]https://cdn.artofproblemsolving.com/attachments/e/4/778678c1e8748e213ffc94ba71b1f3cc26c028.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Czech-Polish-Slovak Match, 2

Written on a blackboard are $n$ nonnegative integers whose greatest common divisor is $1$. A [i]move[/i] consists of erasing two numbers $x$ and $y$, where $x\ge y$, on the blackboard and replacing them with the numbers $x-y$ and $2y$. Determine for which original $n$-tuples of numbers on the blackboard is it possible to reach a point, after some number of moves, where $n-1$ of the numbers of the blackboard are zeroes.

2005 All-Russian Olympiad Regional Round, 8.2

In the middle cell of the $1 \times 2005$ strip there is a chip. Two players each queues move it: first, the first player moves the piece one cell in any direction, then the second one moves it $2$ cells, the $1$st - by $4$ cells, the 2nd by $8$, etc. (the $k$-th shift occurs by $2^{k-1}$ cells). That, whoever cannot make another move loses. Who can win regardless of the opponent's play?

2012 Czech-Polish-Slovak Junior Match, 4

Prove that among any $51$ vertices of the $101$-regular polygon there are three that are the vertices of an isosceles triangle.

2012 Indonesia TST, 3

Let $S$ be a subset of $\{1,2,3,4,5,6,7,8,9,10\}$. If $S$ has the property that the sums of three elements of $S$ are all different, find the maximum number of elements of $S$.

2001 Finnish National High School Mathematics Competition, 4

A sequence of seven digits is randomly chosen in a weekly lottery. Every digit can be any of the digits $0, 1, 2, 3, 4, 5, 6, 7, 8, 9.$ What is the probability of having at most fi ve diff erent digits in the sequence?

2019 Iran MO (2nd Round), 1

We have a rectangle with it sides being a mirror.A light Ray enters from one of the corners of the rectangle and after being reflected several times enters to the opposite corner it started.Prove that at some time the light Ray passed the center of rectangle(Intersection of diagonals.)

2013 Junior Balkan Team Selection Tests - Romania, 2

Let $M$ be the set of integer coordinate points situated on the line $d$ of real numbers. We color the elements of M in black or white. Show that at least one of the following statements is true: (a) there exists a finite subset $F \subset M$ and a point $M \in d$ so that the elements of the set $M - F$ that are lying on one of the rays determined by $M$ on $d$ are all white, and the elements of $M - F$ that are situated on the opposite ray are all black, (b) there exists an infinite subset $S \subset M$ and a point $T \in d$ so that for each $A \in S$ the reflection of A about $T$ belongs to $S$ and has the same color as $A$

2021 HMNT, 1

A domino has a left end and a right end, each of a certain color. Alice has four dominos, colored red-red, red-blue, blue-red, and blue-blue. Find the number of ways to arrange the dominos in a row end-to-end such that adjacent ends have the same color. The dominos cannot be rotated.

2012 Pre - Vietnam Mathematical Olympiad, 3

In a country, there are some cities and the city named [i]Ben Song[/i] is capital. Each cities are connected with others by some two-way roads. One day, the King want to choose $n$ cities to add up with [i]Ben Song[/i] city to establish an [i]expanded capital[/i] such that the two following condition are satisfied: (i) With every two cities in [i]expanded capital[/i], we can always find a road connecting them and this road just belongs to the cities of [i]expanded capital[/i]. (ii) There are exactly $k$ cities which do not belong to [i]expanded capital[/i] have the direct road to at least one city of [i]expanded capital[/i]. Prove that there are at most $\binom{n+k}{k}$ options to expand the capital for the King.

2023 Dutch BxMO TST, 1

Let $n \geq 1$ be an integer. Ruben takes a test with $n$ questions. Each question on this test is worth a different number of points. The first question is worth $1$ point, the second question $2$, the third $3$ and so on until the last question which is worth $n$ points. Each question can be answered either correctly or incorrectly. So an answer for a question can either be awarded all, or none of the points the question is worth. Let $f(n)$ be the number of ways he can take the test so that the number of points awarded equals the number of questions he answered incorrectly. Do there exist in finitely many pairs $(a; b)$ with $a < b$ and $f(a) = f(b)$?

2024 Indonesia TST, 4

Prove that for every positive integer $t$ there is a unique permutation $a_0, a_1, \ldots , a_{t-1}$ of $0, 1, \ldots , t-1$ such that, for every $0 \leq i \leq t-1$, the binomial coefficient $\binom{t+i}{2a_i}$ is odd and $2a_i \neq t+i$.

1998 Singapore Team Selection Test, 2

Let $n \ge 2$ be an integer. Let $S$ be a set of $n$ elements and let $A_i, 1 \le i \le m$, be distinct subsets of $S$ of size at least $2$ such that $A_i \cap A_j \ne \emptyset$, $A_i \cap A_k \ne \emptyset$, $A_j \cap A_k \ne \emptyset$ imply $A_i \cap A_j \cap A_k \ne \emptyset$. Show that $m \le 2^{n-1}$ -

2019 LIMIT Category B, Problem 11

Let $S=\{1,2,\ldots,10\}$. Three numbers are chosen with replacement from $S$. If the chosen numbers denote the lengths of sides of a triangle, then the probability that they will form a triangle is: $\textbf{(A)}~\frac{101}{200}$ $\textbf{(B)}~\frac{99}{200}$ $\textbf{(C)}~\frac12$ $\textbf{(D)}~\frac{110}{200}$

2018 PUMaC Combinatorics A, 7

Frankie the Frog starts his morning at the origin in $\mathbb{R}^2$. He decides to go on a leisurely stroll, consisting of $3^1+3^{10}+3^{11}+3^{100}+3^{111}+3^{1000}$ moves, starting with the first move. On the $n$th move, he hops a distance of $$\max\{k\in\mathbb{Z}:3^k|n\}+1,$$ then turns $90^{\circ}$ counterclockwise. What is the square of the distance from his final position to the origin?

2017 Thailand Mathematical Olympiad, 4

In a math competition, $14$ schools participate, each sending $14$ students. The students are separated into $14$ groups of $14$ so that no two students from the same school are in the same group. The tournament organizers noted that, from the competitors, exactly $15$ have participated in the competition before. The organizers want to select two representatives, with the conditions that they must be former participants, must come from different schools, and must also be in different groups. It turns out that there are $ n$ ways to do this. What is the minimum possible value of $n$?

2022 Macedonian Team Selection Test, Problem 1

Let $n$ be a fixed positive integer. There are $n \geq 1$ lamps in a row, some of them are on and some are off. In a single move, we choose a positive integer $i$ ($1 \leq i \leq n$) and switch the state of the first $i$ lamps from the left. Determine the smallest number $k$ with the property that we can make all of the lamps be switched on using at most $k$ moves, no matter what the initial configuration was. [i]Proposed by Viktor Simjanoski and Nikola Velov[/i]

2018 Indonesia MO, 3

Alzim and Badril are playing a game on a hexagonal lattice grid with 37 points (4 points a side), all of them uncolored. On his turn, Alzim colors one uncolored point with the color red, and Badril colors [b]two[/b] uncolored points with the color blue. The game ends either when there is an equilateral triangle whose vertices are all red, or all points are colored. If the former happens, then Alzim wins, otherwise Badril wins. If Alzim starts the game, does Alzim have a strategy to guarantee victory?

1982 Czech and Slovak Olympiad III A, 3

In the plane with coordinates $x,y$, find an example of a convex set $M$ that contains infinitely many lattice points (i.e. points with integer coordinates), but at the same time only finitely many lattice points from $M$ lie on each line in that plane.

2014 Turkey Junior National Olympiad, 3

There are $2014$ balls with $106$ different colors, $19$ of each color. Determine the least possible value of $n$ so that no matter how these balls are arranged around a circle, one can choose $n$ consecutive balls so that amongst them, there are $53$ balls with different colors.