Found problems: 14842
2009 Balkan MO, 3
A $ 9 \times 12$ rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres $ C_1,C_2,\ldots ,C_{96}$ in such way that the following to conditions are both fulfilled
i) the distances $C_1C_2,\ldots ,C_{95}C_{96}, C_{96}C_{1}$ are all equal to $ \sqrt {13}$,
ii) the closed broken line $ C_1C_2\ldots C_{96}C_1$ has a centre of symmetry?
[i]Bulgaria[/i]
2018 Pan-African Shortlist, C1
A chess tournament is held with the participation of boys and girls. The girls are twice as many as boys. Each player plays against each other player exactly once. By the end of the tournament, there were no draws and the ratio of girl winnings to boy winnings was $\frac{7}{9}$.
How many players took part at the tournament?
2020/2021 Tournament of Towns, P7
Let $p{}$ and $q{}$ be two coprime positive integers. A frog hops along the integer line so that on every hop it moves either $p{}$ units to the right or $q{}$ units to the left. Eventually, the frog returns to the initial point. Prove that for every positive integer $d{}$ with $d < p + q$ there are two numbers visited by the frog which differ just by $d{}$.
[i]Nikolay Belukhov[/i]
2022 CMWMC, R4
[u]Set 4[/u]
[b]p10.[/b] Eve has nine letter tiles: three $C$’s, three $M$’s, and three $W$’s. If she arranges them in a random order, what is the probability that the string “$CMWMC$” appears somewhere in the arrangement?
[b]p11.[/b] Bethany’s Batteries sells two kinds of batteries: $C$ batteries for $\$4$ per package, and $D$ batteries for $\$7$ per package. After a busy day, Bethany looks at her ledger and sees that every customer that day spent exactly $\$2021$, and no two of them purchased the same quantities of both types of battery. Bethany also notes that if any other customer had come, at least one of these two conditions would’ve had to fail. How many packages of batteries did Bethany sell?
[b]p12.[/b] A deck of cards consists of $30$ cards labeled with the integers $1$ to $30$, inclusive. The cards numbered $1$ through $15$ are purple, and the cards numbered $16$ through $30$ are green. Lilith has an expansion pack to the deck that contains six indistinguishable copies of a green card labeled with the number $32$. Lilith wants to pick from the expanded deck a hand of two cards such that at least one card is green. Find the number of distinguishable hands Lilith can make with this deck.
PS. You should use hide for answers.
2010 All-Russian Olympiad Regional Round, 11.2
In a row of $2009$ weights, the weight of each weight is an integer grams and does not exceed $1$ kg. The weights of any two adjacent weights differ by exactly $1$ g, and the total weight of all weights in grams is an even number. Prove that weights can be separated into two piles, the sums of the weights in which are equal.
2017-IMOC, C1
On a blackboard , the 2016 numbers $\frac{1}{2016} , \frac{2}{2016} ,... \frac{2016}{2016}$ are written.
One can perfurm the following operation : Choose any numbers in the blackboard, say $a$ and$ b$ and replace them by $2ab-a-b+1$.
After doing 2015 operation , there will only be one number $t$ Onthe blackboard .
Find all possible values of $ t$.
1994 Baltic Way, 18
There are $n>2$ lines given in the plane. No two of the lines are parallel and no three of them intersect at one point. Every point of intersection of these lines is labelled with a natural number between $1$ and $n-1$. Prove that, if and only if $n$ is even, it is possible to assign the labels in such a way that every line has all the numbers from $1$ to $n-1$ at its points of intersection with the other $n-1$ lines.
2001 Moldova National Olympiad, Problem 8
A box $3\times5\times7$ is divided into unit cube cells. In each of the cells, there is a c[i][/i]ockchafer. At a signal, every c[i][/i]ockchafer moves through a face of its cell to a neighboring cell.
(a) What is the minimum number of empty cells after the signal?
(b) The same question, assuming that the c[i][/i]ockchafers move to diagonally adjacent cells (sharing exactly one vertex).
2017 Balkan MO Shortlist, C3
In the plane, there are $n$ points ($n\ge 4$) where no 3 of them are collinear. Let $A(n)$ be the number of parallelograms whose vertices are those points with area $1$. Prove the following inequality:
$A(n)\leq \frac{n^2-3n}{4}$ for all $n\ge 4$
1986 Bundeswettbewerb Mathematik, 1
The edges of a cube are numbered from $1$ to $12$, then is calculated for each vertex the sum of the numbers of the edges going out from it.
a) Prove that these sums cannot all be the same.
b) Can eight equal sums result after one of the edge numbers is replaced by the number $13$ ?
1989 China Team Selection Test, 4
$\forall n \in \mathbb{N}$, $P(n)$ denotes the number of the partition of $n$ as the sum of positive integers (disregarding the order of the parts), e.g. since $4 = 1+1+1+1 = 1+1+2 = 1+3 = 2+2 = 4$, so $P(4)=5$. "Dispersion" of a partition denotes the number of different parts in that partitation. And denote $q(n)$ is the sum of all the dispersions, e.g. $q(4)=1+2+2+1+1=7$. $n \geq 1$. Prove that
(1) $q(n) = 1 + \sum^{n-1}_{i=1} P(i).$
(2) $1 + \sum^{n-1}_{i=1} P(i) \leq \sqrt{2} \cdot n \cdot P(n)$.
2012 Baltic Way, 9
Zeroes are written in all cells of a $5 \times 5$ board. We can take an arbitrary cell and increase by 1 the number in this cell and all cells having a common side with it. Is it possible to obtain the number 2012 in all cells simultaneously?
2023 ISL, C5
Elisa has $2023$ treasure chests, all of which are unlocked and empty at first. Each day, Elisa adds a new gem to one of the unlocked chests of her choice, and afterwards, a fairy acts according to the following rules:
[list=disc]
[*]if more than one chests are unlocked, it locks one of them, or
[*]if there is only one unlocked chest, it unlocks all the chests.
[/list]
Given that this process goes on forever, prove that there is a constant $C$ with the following property: Elisa can ensure that the difference between the numbers of gems in any two chests never exceeds $C$, regardless of how the fairy chooses the chests to unlock.
1989 Tournament Of Towns, (241) 5
We are given $100$ points. $N$ of these are vertices of a convex $N$-gon and the other $100 - N$ of these are inside this $N$-gon. The labels of these points make it impossible to tell whether or not they are vertices of the $N$-gon. It is known that no three points are collinear and that no $4$ points belong to two parallel lines. It has been decided to ask questions of the following type: What is the area of the triangle $XYZ$, where $X, Y$ and $Z$ are labels representing three of the $100$ given points? Prove that $300$ such questions are sufficient in order to clarify which points are vertices and to determine the area of the $N$-gon.
(D. Fomin, Leningrad)
2004 Iran MO (2nd round), 6
We have a $m\times n$ table and $m\geq{4}$ and we call a $1\times 1$ square a room. When we put an alligator coin in a room, it menaces all the rooms in his column and his adjacent rooms in his row. What's the minimum number of alligator coins required, such that each room is menaced at least by one alligator coin? (Notice that all alligator coins are vertical.)
2020 Tournament Of Towns, 6
Given an endless supply of white, blue and red cubes. In a circle arrange any $N$ of them. The robot, standing in any place of the circle, goes clockwise and, until one cube remains, constantly repeats this operation: destroys the two closest cubes in front of him and puts a new one behind him a cube of the same color if the destroyed ones are the same, and the third color if the destroyed two are different colors.
We will call the arrangement of the cubes [i]good [/i] if the color of the cube remaining at the very end does not depends on where the robot started. We call $N$ [i]successful [/i] if for any choice of $N$ cubes all their arrangements are good. Find all successful $N$.
I. Bogdanov
2016 IFYM, Sozopol, 7
A grasshopper hops from an integer point to another integer point in the plane, where every even jump has a length $\sqrt{98}$ and every odd one - $\sqrt{149}$. What’s the least number of jumps the grasshopper has to make in order to return to its starting point after odd number of jumps?
2015 Romania National Olympiad, 4
Let be a finite set $ A $ of real numbers, and define the sets $ S_{\pm }=\{ x\pm y| x,y\in A \} . $
Show that $ \left| A \right|\cdot\left| S_{-} \right| \le \left| S_{+} \right|^2 . $
2010 Slovenia National Olympiad, 5
Let $ABC$ be an equilateral triangle with the side of $20$ units. Amir divides this triangle into $400$ smaller equilateral triangles with the sides of $1$ unit. Reza then picks $4$ of the vertices of these smaller triangles. The vertices lie inside the triangle $ABC$ and form a parallelogram with sides parallel to the sides of the triangle $ABC.$ There are exactly $46$ smaller triangles that have at least one point in common with the sides of this parallelogram. Find all possible values for the area of this parallelogram.
[asy]
unitsize(150);
defaultpen(linewidth(0.7));
int n = 20; /* # of vertical lines, including BC */
pair A = (0,0), B = dir(-30), C = dir(30);
draw(A--B--C--cycle,linewidth(1)); dot(A,UnFill(0)); dot(B,UnFill(0)); dot(C,UnFill(0));
label("$A$",A,W); label("$C$",C,NE); label("$B$",B,SE);
for(int i = 1; i < n; ++i) {
draw((i*A+(n-i)*B)/n--(i*A+(n-i)*C)/n);
draw((i*B+(n-i)*A)/n--(i*B+(n-i)*C)/n);
draw((i*C+(n-i)*A)/n--(i*C+(n-i)*B)/n);
}[/asy]
[Thanks azjps for drawing the diagram.]
[hide="Note"][i]Note:[/i] Vid changed to Amir, and Eva change to Reza![/hide]
1966 Dutch Mathematical Olympiad, 5
The image that maps $x$ to $1 - x$ is called [i]complement[/i], the image that maps $x$ to $\frac{1}{x}$ is called [i]invert[/i]. Two numbers $x$ and $y$ are called related if they can be transferred into each other by means of [i]complementation [/i]and/or [i]inversion[/i]. A [i]family [/i] is a collection of numbers where every two elements are related. Determine the maximum size $n$ of such a family.
Show that the number line can be divided into $n$ parts, such that each of those $n$ parts contains exactly one number from each $n$-number family.
1995 Tournament Of Towns, (463) 1
A square is placed in the plane and a point $P$ is marked in this plane with invisible ink. A certain person can see this point through special glasses. One can draw a straight line and this person will say on which side of the line the point $P$ lies. If $P$ lies on the line, the person says so. What is the minimal number of questions one needs to find out if $P$ lies inside the square or not?
(Folklore)
V Soros Olympiad 1998 - 99 (Russia), 8.1 - 8.4
[b]p1.[/b] Is it possible to write $5$ different fractions that add up to $1$, such that their numerators are equal to one and their denominators are natural numbers?
[b]p2.[/b] The following is known about two numbers $x$ and $y$:
if $x\ge 0$, then $y = 1 -x$;
if $y\le 1$, then $x = 1 + y$;
if $x\le 1$, then $x = |1 + y|$.
Find $x$ and $y$.
[b]p3.[/b] Five people living in different cities received a salary, some more, others less ($143$, $233$, $313$, $410$ and $413$ rubles). Each of them can send money to the other by mail. In this case, the post office takes $10\%$ of the amount of money sent for the transfer (in order to receive $100$ rubles, you need to send $10\%$ more, that is, $110$ rubles). They want to send money so that everyone has the same amount of money, and the post office receives as little money as possible. How much money will each person have using the most economical shipping method?
[b]p4.[/b] a) List three different natural numbers $m$, $n$ and $k$ for which $m! = n! \cdot k!$ .
b) Is it possible to come up with $1999$ such triplets?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
2003 Estonia Team Selection Test, 4
A deck consists of $2^n$ cards. The deck is shuffled using the following operation: if the cards are initially in the order
$a_1,a_2,a_3,a_4,...,a_{2^n-1},a_{2^n}$ then after shuffling the order becomes $a_{2^{n-1}+1},a_1,a_{2^{n-1}+2},a_2,...,a_{2^n},a_{2^{n-1}}$ .
Find the smallest number of such operations after which the original order of the cards is restored.
(R. Palm)
2019 Turkey EGMO TST, 6
There are $k$ piles and there are $2019$ stones totally. In every move we split a pile into two or remove one pile. Using finite moves we can reach conclusion that there are $k$ piles left and all of them contain different number of stonws. Find the maximum of $k$.
2025 Junior Balkan Team Selection Tests - Romania, P5
Let $n\geqslant 3$ be a positive integer and $\mathcal F$ be a family of at most $n$ distinct subsets of the set $\{1,2,\ldots,n\}$ with the following property: we can consider $n$ distinct points in the plane, labelled $1,2,\ldots,n$ and draw segments connecting these points such that points $i$ and $j$ are connected if and only if $i{}$ belongs to $j$ subsets in $\mathcal F$ for any $i\neq j.$ Determine the maximal value that the sum of the cardinalities of the subsets in $\mathcal{F}$ can take.