This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2008 Bulgaria Team Selection Test, 1

Let $n$ be a positive integer. There is a pawn in one of the cells of an $n\times n$ table. The pawn moves from an arbitrary cell of the $k$th column, $k \in \{1,2, \cdots, n \}$, to an arbitrary cell in the $k$th row. Prove that there exists a sequence of $n^{2}$ moves such that the pawn goes through every cell of the table and finishes in the starting cell.

2022 MOAA, 4

Angeline flips three fair coins, and if there are any tails, she then flips all coins that landed tails each one more time. The probability that all coins are now heads can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2013 Tournament of Towns, 7

A closed broken self-intersecting line is drawn in the plane. Each of the links of this line is intersected exactly once and no three links intersect at the same point. Further, there are no self-intersections at the vertices and no two links have a common segment. Can it happen that every point of self-intersection divides both links in halves?

2003 All-Russian Olympiad, 4

Ana and Bora are each given a sufficiently long paper strip, one with letter $A$ written , and the other with letter $B$. Every minute, one of them (not necessarily one after another) writes either on the left or on the right to the word on his/her strip the word written on the other strip. Prove that the day after, one will be able to cut word on Ana's strip into two words and exchange their places, obtaining a palindromic word.

2011 IMO Shortlist, 7

On a square table of $2011$ by $2011$ cells we place a finite number of napkins that each cover a square of $52$ by $52$ cells. In each cell we write the number of napkins covering it, and we record the maximal number $k$ of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of $k$? [i]Proposed by Ilya Bogdanov and Rustem Zhenodarov, Russia[/i]

2023 China MO, 4

Find the minimum positive integer $n\ge 3$, such that there exist $n$ points $A_1,A_2,\cdots, A_n$ satisfying no three points are collinear and for any $1\le i\le n$, there exist $1\le j \le n (j\neq i)$, segment $A_jA_{j+1}$ pass through the midpoint of segment $A_iA_{i+1}$, where $A_{n+1}=A_1$

1999 Tournament Of Towns, 5

Is it possible to divide a $8 \times 8$ chessboard into $32$ rectangles, each either $1 \times 2$ or $2 \times 1$, and to draw exactly one diagonal on each rectangle such that no two of these diagonals have a common endpoint? (A Shapovalov)

2009 Tuymaada Olympiad, 4

Each of the subsets $ A_1$, $ A_2$, $ \dots,$ $ A_n$ of a 2009-element set $ X$ contains at least 4 elements. The intersection of every two of these subsets contains at most 2 elements. Prove that in $ X$ there is a 24-element subset $ B$ containing neither of the sets $ A_1$, $ A_2$, $ \dots,$ $ A_n$.

2015 Peru Cono Sur TST, P6

Let $n$ be a positive integer. On a $2n\times 2n$ board, the $2n^2$ squares were painted white and the other $2n^2$ squares were painted black. One operation is to choose a $2\times 2$ subtable and mirror its $4$ cells about the vertical or horizontal axis of symmetry of that subtable. For what values of $n$ is it always possible to obtain a chess-like coloring from any initial coloring?

2021 Stanford Mathematics Tournament, R5

[b]p17.[/b] Let the roots of the polynomial $f(x) = 3x^3 + 2x^2 + x + 8 = 0$ be $p, q$, and $r$. What is the sum $\frac{1}{p} +\frac{1}{q} +\frac{1}{r}$ ? [b]p18.[/b] Two students are playing a game. They take a deck of five cards numbered $1$ through $5$, shuffle them, and then place them in a stack facedown, turning over the top card next to the stack. They then take turns either drawing the card at the top of the stack into their hand, showing the drawn card to the other player, or drawing the card that is faceup, replacing it with the card on the top of the pile. This is repeated until all cards are drawn, and the player with the largest sum for their cards wins. What is the probability that the player who goes second wins, assuming optimal play? [b]p19.[/b] Compute the sum of all primes $p$ such that $2^p + p^2$ is also prime. [b]p20.[/b] In how many ways can one color the $8$ vertices of an octagon each red, black, and white, such that no two adjacent sides are the same color? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Indonesia MO, 4

Problem 4. A chessboard with $2n \times 2n$ tiles is coloured such that every tile is coloured with one out of $n$ colours. Prove that there exists 2 tiles in either the same column or row such that if the colours of both tiles are swapped, then there exists a rectangle where all its four corner tiles have the same colour.

2014 Contests, 3

We have $4n + 5$ points on the plane, no three of them are collinear. The points are colored with two colors. Prove that from the points we can form $n$ empty triangles (they have no colored points in their interiors) with pairwise disjoint interiors, such that all points occurring as vertices of the $n$ triangles have the same color.

2019 ABMC, Speed

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Compute the sum $2019 + 201 + 20 + 2$. [b]p2.[/b] The sequence $100, 102, 104,..., 996$ and $998$ is the sequence of all three-digit even numbers. How many three digit even numbers are there? [b]p3.[/b] Find the units digit of $25\times 37\times 113\times 22$. [b]p4.[/b] Samuel has a number in his head. He adds $4$ to the number and then divides the result by $2$. After doing this, he ends up with the same number he had originally. What is his original number? [b]p5.[/b] According to Shay's Magazine, every third president is terrible (so the third, sixth, ninth president and so on were all terrible presidents). If there have been $44$ presidents, how many terrible presidents have there been in total? [b]p6.[/b] In the game Tic-Tac-Toe, a player wins by getting three of his or her pieces in the same row, column, or diagonal of a $3\times 3$ square. How many configurations of $3$ pieces are winning? Rotations and reflections are considered distinct. [b]p7.[/b] Eddie is a sad man. Eddie is cursed to break his arm $4$ times every $20$ years. How many times would he break his arm by the time he reaches age $100$? [b]p8. [/b]The figure below is made from $5$ congruent squares. If the figure has perimeter $24$, what is its area? [img]https://cdn.artofproblemsolving.com/attachments/1/9/6295b26b1b09cacf0c32bf9d3ba3ce76ddb658.png[/img] [b]p9.[/b] Sancho Panza loves eating nachos. If he eats $3$ nachos during the first minute, $4$ nachos during the second, $5$ nachos during the third, how many nachos will he have eaten in total after $15$ minutes? [b]p10.[/b] If the day after the day after the day before Wednesday was two days ago, then what day will it be tomorrow? [b]p11.[/b] Neetin the Rabbit and Poonam the Meerkat are in a race. Poonam can run at $10$ miles per hour, while Neetin can only hop at $2$ miles per hour. If Neetin starts the race $2$ miles ahead of Poonam, how many minutes will it take for Poonam to catch up with him? [b]p12.[/b] Dylan has a closet with t-shirts: $3$ gray, $4$ blue, $2$ orange, $7$ pink, and $2$ black. Dylan picks one shirt at random from his closet. What is the probability that Dylan picks a pink or a gray t-shirt? [b]p13.[/b] Serena's brain is $200\%$ the size of Eric's brain, and Eric's brain is $200\%$ the size of Carlson's. The size of Carlson's brain is what percent the size of Serena's? [b]p14.[/b] Find the sum of the coecients of $(2x + 1)^3$ when it is fully expanded. [b]p15. [/b]Antonio loves to cook. However, his pans are weird. Specifically, the pans are rectangular prisms without a top. What is the surface area of the outside of one of Antonio's pans if their volume is $210$, and their length and width are $6$ and $5$, respectively? [b]p16.[/b] A lattice point is a point on the coordinate plane with $2$ integer coordinates. For example, $(3, 4)$ is a lattice point since $3$ and $4$ are both integers, but $(1.5, 2)$ is not since $1.5$ is not an integer. How many lattice points are on the graph of the equation $x^2 + y^2 = 625$? [b]p17.[/b] Jonny has a beaker containing $60$ liters of $50\%$ saltwater ($50\%$ salt and $50\%$ water). Jonny then spills the beaker and $45$ liters pour out. If Jonny adds $45$ liters of pure water back into the beaker, what percent of the new mixture is salt? [b]p18.[/b] There are exactly 25 prime numbers in the set of positive integers between $1$ and $100$, inclusive. If two not necessarily distinct integers are randomly chosen from the set of positive integers from $1$ to $100$, inclusive, what is the probability that at least one of them is prime? [b]p19.[/b] How many consecutive zeroes are at the end of $12!$ when it is expressed in base $6$? [b]p20.[/b] Consider the following figure. How many triangles with vertices and edges from the following figure contain exactly $1$ black triangle? [img]https://cdn.artofproblemsolving.com/attachments/f/2/a1c400ff7d06b583c1906adf8848370e480895.png[/img] [b]p21.[/b] After Akshay got kicked o the school bus for rowdy behavior, he worked out a way to get home from school with his dad. School ends at $2:18$ pm, but since Akshay walks slowly he doesn't get to the front door until $2:30$. His dad doesn't like to waste time, so he leaves home everyday such that he reaches the high school at exactly $2:30$ pm, instantly picks up Akshay and turns around, then drives home. They usually get home at $3:30$ pm. However, one day Akshay left school early at exactly $2:00$ pm because he was expelled. Trying to delay telling his dad for as long as possible, Akshay starts jogging home. His dad left home at the regular time, saw Akshay on the way, picked him up and turned around instantly. They then drove home while Akshay's dad yelled at him for being a disgrace. They reached home at $3:10$ pm. How long had Akshay been walking before his dad picked him up? [b]p22.[/b] In quadrilateral $ABCD$, diagonals $AC$ and $BD$ intersect at $O$. Then $\angle BOC = \angle BCD$, $\angle COD =\angle BAD$, $AB = 4$, $DC = 6$, and $BD = 5$. What is the length of $BO$? [b]p23.[/b] A standard six-sided die is rolled. The number that comes up first determines the number of additional times the die will be rolled (so if the first number is $3$, then the die will be rolled $3$ more times). Each time the die is rolled, its value is recorded. What is the expected value of the sum of all the rolls? [b]p24.[/b] Dora has a peculiar calculator that can only perform $2$ operations: either adding $1$ to the current number or squaring the current number. Each minute, Dora randomly chooses an operation to apply to her number. She starts with $0$. What is the expected number of minutes it takes Dora's number to become greater than or equal to $10$? [b]p25.[/b] Let $\vartriangle ABC$ be such that $AB = 2$, $BC = 1$, and $\angle ACB = 90^o$. Let points $D$ and $E$ be such that $\vartriangle ADE$ is equilateral, $D$ is on segment $\overline{BC}$, and $D$ and $E$ are not on the same side of $\overline{AC}$. Segment $\overline{BE}$ intersects the circumcircle of $\vartriangle ADE$ at a second point $F$. If $BE =\sqrt{6}$, find the length of $\overline{BF}$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1994 Balkan MO, 4

Find the smallest number $n \geq 5$ for which there can exist a set of $n$ people, such that any two people who are acquainted have no common acquaintances, and any two people who are not acquainted have exactly two common acquaintances. [i]Bulgaria[/i]

2018 China Second Round Olympiad, 3

Let $n,k,m$ be positive integers, where $k\ge 2$ and $n\le m < \frac{2k-1}{k}n$. Let $A$ be a subset of $\{1,2,\ldots ,m\}$ with $n$ elements. Prove that every integer in the range $\left(0,\frac{n}{k-1}\right)$ can be expressed as $a-b$, where $a,b\in A$.

2005 CentroAmerican, 4

Two players, Red and Blue, play in alternating turns on a 10x10 board. Blue goes first. In his turn, a player picks a row or column (not chosen by any player yet) and color all its squares with his own color. If any of these squares was already colored, the new color substitutes the old one. The game ends after 20 turns, when all rows and column were chosen. Red wins if the number of red squares in the board exceeds at least by 10 the number of blue squares; otherwise Blue wins. Determine which player has a winning strategy and describe this strategy.

1995 Baltic Way, 12

Assume we have $95$ boxes and $19$ balls distributed in these boxes in an arbitrary manner. We take $6$ new balls at a time and place them in $6$ of the boxes, one ball in each of the six. Can we, by repeating this process a suitable number of times, achieve a situation in which each of the $95$ boxes contains an equal number of balls?

2019 Hanoi Open Mathematics Competitions, 12

Given an expression $x^2 + ax + b$ where $a,b$ are integer coefficients. At any step, one can change the expression by adding either $1$ or $-1$ to only one of the two coefficients $a, b$. a) Suppose that the initial expression has $a =-7$ and $b = 19$. Show your modification steps to obtain a new expression that has zero value at some integer value of $x$. b) Starting from the initial expression as above, one gets the expression $x^2 - 17x + 9$ after $m$ modification steps. Prove that at a certain step $k$ with $k < m$, the obtained expression has zero value at some integer value of $x$.

2018 Brazil Team Selection Test, 1

The numbers $1- \sqrt{2}$, $\sqrt{2}$ and $1+\sqrt{2}$ are written on a blackboard. Every minute, if $x, y, z$ are the numbers written, then they are erased and the numbers, $x^2 + xy + y^2$, $y^2 + yz + z^2$ and $z^2 + zx + x^2$ are written. Determine whether it is possible for all written numbers to be rational numbers after a finite number of minutes.

2017 European Mathematical Cup, 2

A friendly football match lasts 90 minutes. In this problem, we consider one of the teams, coached by Sir Alex, which plays with 11 players at all times. a) Sir Alex wants for each of his players to play the same integer number of minutes, but each player has to play less than 60 minutes in total. What is the minimum number of players required? b) For the number of players found in a), what is the minimum number of substitutions required, so that each player plays the same number of minutes? [i]Remark:[/i] Substitutions can only take place after a positive integer number of minutes, and players who have come off earlier can return to the game as many times as needed. There is no limit to the number of substitutions allowed. Proposed by Athanasios Kontogeorgis and Demetres Christofides.

2009 Tournament Of Towns, 2

Mike has $1000$ unit cubes. Each has $2$ opposite red faces, $2$ opposite blue faces and $2$ opposite white faces. Mike assembles them into a $10 \times 10 \times 10$ cube. Whenever two unit cubes meet face to face, these two faces have the same colour. Prove that an entire face of the $10 \times 10 \times 10$ cube has the same colour. [i](6 points)[/i]

2018 Balkan MO Shortlist, C3

An open necklace can contain rubies, emeralds, and sapphires. At every step we can perform any of the following operations: [list=1] [*]We can replace two consecutive rubies with an emerald and a sapphire, where the emerald is on the left of the sapphire.[/*] [*]We can replace three consecutive emeralds with a sapphire and a ruby, where the sapphire is on the left of the ruby. [/*] [*]If we find two consecutive sapphires then we can remove them.[/*] [*]If we find consecutively and in this order a ruby, an emerald, and a sapphire, then we can remove them.[/*] [/list] Furthermore we can also reverse all of the above operations. For example by reversing 3. we can put two consecutive sapphires on any position we wish. Initially the necklace has one sapphire (and no other precious stones). Decide, with proof, whether there is a finite sequence of steps such that at the end of this sequence the necklace contains one emerald (and no other precious stones). [i]Remark:[/i] A necklace is open if its precious stones are on a line from left to right. We are not allowed to move a precious stone from the rightmost position to the leftmost as we would be able to do if the necklace was closed. [i]Proposed by Demetres Christofides, Cyprus[/i]

2015 Iberoamerican Math Olympiad, 6

Beto plays the following game with his computer: initially the computer randomly picks $30$ integers from $1$ to $2015$, and Beto writes them on a chalkboard (there may be repeated numbers). On each turn, Beto chooses a positive integer $k$ and some if the numbers written on the chalkboard, and subtracts $k$ from each of the chosen numbers, with the condition that the resulting numbers remain non-negative. The objective of the game is to reduce all $30$ numbers to $0$, in which case the game ends. Find the minimal number $n$ such that, regardless of which numbers the computer chooses, Beto can end the game in at most $n$ turns.

2017 Ukraine Team Selection Test, 10

Find all positive integers $n$ for which all positive divisors of $n$ can be put into the cells of a rectangular table under the following constraints: [list] [*]each cell contains a distinct divisor; [*]the sums of all rows are equal; and [*]the sums of all columns are equal. [/list]

2021 Iranian Combinatorics Olympiad, P2

We assume a truck as a $1 \times (k + 1)$ tile. Our parking is a $(2k + 1) \times (2k + 1)$ table and there are $t$ trucks parked in it. Some trucks are parked horizontally and some trucks are parked vertically in the parking. The vertical trucks can only move vertically (in their column) and the horizontal trucks can only move horizontally (in their row). Another truck is willing to enter the parking lot (it can only enter from somewhere on the boundary). For $3k + 1 < t < 4k$, prove that we can move other trucks forward or backward in such a way that the new truck would be able to enter the lot. Prove that the statement is not necessarily true for $t = 3k + 1$.