Found problems: 14842
KoMaL A Problems 2018/2019, A. 740
A $k \times k$ array contains each of the numbers $1, 2, \dots, m$ exactly once, with the remaining entries all zero. Suppose that all the row sums and column sums are equal. What is the smallest possible value of $m$ if $k = 3^n$ ($n \in \mathbb{N}^+$)?
[i]Attila Sztranyák and Péter Erben[/i]
2013 Iran Team Selection Test, 2
Find the maximum number of subsets from $\left \{ 1,...,n \right \}$ such that for any two of them like $A,B$ if $A\subset B$ then $\left | B-A \right |\geq 3$. (Here $\left | X \right |$ is the number of elements of the set $X$.)
1989 IMO Longlists, 72
To each pair $ (x, y)$ of distinct elements of a finite set $ X$ a number $ f(x, y)$ equal to 0 or 1 is assigned in such a way that $ f(x, y) \neq f(y, x)$ $ \forall x,y$ and $ x \neq y.$ Prove that exactly one of the following situations occurs:
[b](i)[/b] $ X$ is the union of two disjoint nonempty subsets $ U, V$ such that $ f(u, v) \equal{} 1$ $ \forall u \in U, v \in V.$
[b](ii)[/b] The elements of $ X$ can be labeled $ x_1, \ldots , x_n$ so that \[ f(x_1, x_2) \equal{} f(x_2, x_3) \equal{} \cdots \equal{} f(x_{n\minus{}1}, x_n) \equal{} f(x_n, x_1) \equal{} 1.\]
[i]Alternative formulation:[/i]
In a tournament of n participants, each pair plays one game (no ties). Prove that exactly one of the following situations occurs:
[b](i)[/b] The league can be partitioned into two nonempty groups such that each player in one of these groups has won against each player of the other.
[b](ii)[/b] All participants can be ranked 1 through $ n$ so that $ i\minus{}$th player wins the game against the $ (i \plus{} 1)$st and the $ n\minus{}$th player wins against the first.
1999 Cono Sur Olympiad, 3
There are $1999$ balls in a row, some are red and some are blue (it could be all red or all blue). Under every ball we write a number equal to the sum of the amount of red balls in the right of this ball plus the sum of the amount of the blue balls that are in the left of this ball.
In the sequence of numbers that we get with this balls we have exactly three numbers that appears an odd number of times, which numbers could these three be?
2015 Peru IMO TST, 7
For a sequence $x_1,x_2,\ldots,x_n$ of real numbers, we define its $\textit{price}$ as \[\max_{1\le i\le n}|x_1+\cdots +x_i|.\] Given $n$ real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price $D$. Greedy George, on the other hand, chooses $x_1$ such that $|x_1 |$ is as small as possible; among the remaining numbers, he chooses $x_2$ such that $|x_1 + x_2 |$ is as small as possible, and so on. Thus, in the $i$-th step he chooses $x_i$ among the remaining numbers so as to minimise the value of $|x_1 + x_2 + \cdots x_i |$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price $G$.
Find the least possible constant $c$ such that for every positive integer $n$, for every collection of $n$ real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G\le cD$.
[i]Proposed by Georgia[/i]
2010 Argentina Team Selection Test, 4
Two players, $A$ and $B$, play a game on a board which is a rhombus of side $n$ and angles of $60^{\circ}$ and $120^{\circ}$, divided into $2n^2$ equilateral triangles, as shown in the diagram for $n=4$.
$A$ uses a red token and $B$ uses a blue token, which are initially placed in cells containing opposite corners of the board (the $60^{\circ}$ ones). In turns, players move their token to a neighboring cell (sharing a side with the previous one). To win the game, a player must either place his token on the cell containing the other player's token, or get to the opposite corner to the one where he started.
If $A$ starts the game, determine which player has a winning strategy.
1992 Austrian-Polish Competition, 2
Each point on the boundary of a square has to be colored in one color. Consider all right triangles with the vertices on the boundary of the square. Determine the least number of colors for which there is a coloring such that no such triangle has all its vertices of the same color.
2016 India Regional Mathematical Olympiad, 6
A deck of $52$ cards is given. There are four suites each having cards numbered $1,2,\dots, 13$. The audience chooses some five cards with distinct numbers written on them. The assistant of the magician comes by, looks at the five cards and turns exactly one of them face down and arranges all five cards in some order. Then the magician enters and with an agreement made beforehand with the assistant, he has to determine the face down card (both suite and number). Explain how the trick can be completed.
2022 Iran Team Selection Test, 1
Morteza Has $100$ sets. at each step Mahdi can choose two distinct sets of them and Morteza tells him the intersection and union of those two sets. Find the least steps that Mahdi can find all of the sets.
Proposed by Morteza Saghafian
2022-23 IOQM India, 20
For an integer $n\ge 3$ and a permutation $\sigma=(p_{1},p_{2},\cdots ,p_{n})$ of $\{1,2,\cdots , n\}$, we say $p_{l}$ is a $landmark$ point if $2\le l\le n-1$ and $(p_{l-1}-p_{l})(p_{l+1}-p_{l})>0$. For example , for $n=7$,\\
the permutation $(2,7,6,4,5,1,3)$ has four landmark points: $p_{2}=7$, $p_{4}=4$, $p_{5}=5$ and $p_{6}=1$. For a given $n\ge 3$ , let $L(n)$ denote the number of permutations of $\{1,2,\cdots ,n\}$ with exactly one landmark point. Find the maximum $n\ge 3$ for which $L(n)$ is a perfect square.
2024 ELMO Shortlist, C7
Let $n\ge 2$ be a positive integer, and consider an $n\times n$ grid of $n^2$ equilateral triangles. Two triangles are adjacent if they share at least one vertex. Each triangle is colored red or blue, splitting the grid into regions.
Find, with proof, the minimum number of triangles in the largest region.
[i]Rohan Bodke[/i]
2016 Miklós Schweitzer, 2
Let $K=(V,E)$ be a finite, simple, complete graph. Let $d$ be a positive integer. Let $\phi:E\to \mathbb{R}^d$ be a map from the edge set to Euclidean space, such that the preimage of any point in the range defines a connected graph on the entire vertex set $V$, and the points assigned to the edges of any triangle in $K$ are collinear. Show that the range of $\phi$ is contained in a line.
2020 Princeton University Math Competition, A1/B2
Joey is playing with a $2$-by-$2$-by-$2$ Rubik’s cube made up of $ 8$ $1$-by-$1$-by-$1$ cubes (with two of these smaller cubes along each of the sides of the bigger cubes). Each face of the Rubik’s cube is distinct color. However, one day, Joey accidentally breaks the cube! He decides to put the cube back together into its solved state, placing each of the pieces one by one. However, due to the nature of the cube, he is only able to put in a cube if it is adjacent to a cube he already placed. If different orderings of the ways he chooses the cubes are considered distinct, determine the number of ways he can reassemble the cube.
2022 Belarus - Iran Friendly Competition, 6
Given two finite collections of pairs of real numbers
It turned out that for any three pairs $(a_1, b_1)$, $(a_2, b_2)$ and $(a_3, b_3)$ from the first collection there is a pair $(c, d)$ from the second collection, such that the following three inequalities hold:
\[
a_1c + b_1d \geq 0,a_2c + b_2c \geq 0 \text{ and } a_3c + b_3d \geq 0
\]
Prove that there is a pair $(\gamma, \delta)$ in the second collection, such that for any pair $(\alpha, \beta)$ from the first collection inequality $\alpha \gamma + \beta \delta \geq 0$ holds.
2018 Harvard-MIT Mathematics Tournament, 10
One million [i]bucks [/i] (i.e. one million male deer) are in different cells of a $1000 \times 1000$ grid. The left and right edges of the grid are then glued together, and the top and bottom edges of the grid are glued together, so that the grid forms a doughnut-shaped torus. Furthermore, some of the bucks are [i]honest bucks[/i], who always tell the truth, and the remaining bucks are [i]dishonest bucks[/i], who never tell the truth.
Each of the million [i]bucks [/i] claims that “at most one of my neighboring bucks is an [i]honest buck[/i].” A pair of [i]neighboring bucks[/i] is said to be [i]buckaroo[/i] if exactly one of them is an [i]honest buck[/i] . What is the minimum possible number of [i]buckaroo [/i] pairs in the grid?
Note: Two [i]bucks [/i] are considered to be [i]neighboring [/i] if their cells $(x_1, y_1)$ and $(x_2, y_2)$ satisfy either:
$x_1 = x_2$ and $y_1 - y_2 \equiv \pm1$ (mod $1000$), or $x_1 - x_2 \equiv \pm 1$ (mod $1000$) and $y_1 = y_2$.
2003 Kazakhstan National Olympiad, 3
Two square sheets have areas equal to $ 2003$. Each of the sheets is arbitrarily divided into $ 2003$ nonoverlapping polygons, besides, each of the polygons has an unitary area. Afterward, one overlays two sheets, and it is asked to prove that the obtained double layer can be punctured $ 2003$ times, so that each of the $ 4006$ polygons gets punctured precisely once.
2014 Germany Team Selection Test, 1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
2006 Romania National Olympiad, 4
Let $\displaystyle n \in \mathbb N$, $\displaystyle n \geq 2$. Determine $\displaystyle n$ sets $\displaystyle A_i$, $\displaystyle 1 \leq i \leq n$, from the plane, pairwise disjoint, such that:
(a) for every circle $\displaystyle \mathcal C$ from the plane and for every $\displaystyle i \in \left\{ 1,2,\ldots,n \right\}$ we have $\displaystyle A_i \cap \textrm{Int} \left( \mathcal C \right) \neq \phi$;
(b) for all lines $\displaystyle d$ from the plane and every $\displaystyle i \in \left\{ 1,2,\ldots,n \right\}$, the projection of $\displaystyle A_i$ on $\displaystyle d$ is not $\displaystyle d$.
2007 All-Russian Olympiad, 2
The numbers $1,2,\ldots,100$ are written in the cells of a $10\times 10$ table, each number is written once. In one move, Nazar may interchange numbers in any two cells. Prove that he may get a table where the sum of the numbers in every two adjacent (by side) cells is composite after at most $35$ such moves.
[i]N. Agakhanov[/i]
2015 Turkey EGMO TST, 6
In a party attended by $2015$ guests among any $5$ guests at most $6$ handshakes had been exchanged. Determine the maximal possible total number of handshakes.
JOM 2024, 2
The sequence $1, 2, \dots, 2023, 2024$ is written on a whiteboard. Every second, Megavan chooses two integers $a$ and $b$, and four consecutive numbers on the whiteboard. Then counting from the left, he adds $a$ to the 1st and 3rd of those numbers, and adds $b$ to the 2nd and 4th of those numbers. Can he achieve the sequence $2024, 2023, \dots, 2, 1$ in a finite number of moves?
[i](Proposed by Avan Lim Zenn Ee)[/i]
2017 Baltic Way, 8
A chess knight has injured his leg and is limping. He alternates between a normal move and a short move where he moves to any diagonally neighbouring cell.
The limping knight moves on a $5 \times 6$ cell chessboard starting with a normal move. What is the largest number of moves he can make if he is starting from a cell of his own choice and is not allowed to visit any cell (including the initial cell) more than once?
1997 Brazil National Olympiad, 2
Let $A$ be a set of $n$ non-negative integers. We say it has property $\mathcal P$ if the set $\{x + y \mid x, y \in A\}$ has $\binom{n}{2}$ elements. We call the largest element of $A$ minus the smallest element, the diameter of $A$. Let $f(n)$ be the smallest diameter of any set $A$ with property $\mathcal P$. Show that $n^2 \leq 4 f(n) < 4 n^3$.
[hide="Comment"](If you have some amount of time, try a best estimative for $f(n)$, such that $f(p)<2p^2$ for prime $p$).[/hide]
2000 All-Russian Olympiad Regional Round, 10.8
There are $2000$ cities in the country, some pairs of cities are connected by roads. It is known that no more than $N$ different non-self-intersecting cyclic routes of odd length. Prove that the country can be divided into $2N +2$ republics so that no two cities from the same republic are connected by a road.
2024 Thailand TST, 3
Elisa has $2023$ treasure chests, all of which are unlocked and empty at first. Each day, Elisa adds a new gem to one of the unlocked chests of her choice, and afterwards, a fairy acts according to the following rules:
[list=disc]
[*]if more than one chests are unlocked, it locks one of them, or
[*]if there is only one unlocked chest, it unlocks all the chests.
[/list]
Given that this process goes on forever, prove that there is a constant $C$ with the following property: Elisa can ensure that the difference between the numbers of gems in any two chests never exceeds $C$, regardless of how the fairy chooses the chests to unlock.