This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2017 Caucasus Mathematical Olympiad, 5

In a football tournament $20$ teams participated, each pair of teams played exactly one game. For the win the team is awarded $3$ points, for the draw -- $1$ point, for the lose no points awarded. The total number of points of all teams in the tournament is $554$. Prove that there exist $7$ teams each having at least one draw.

2005 China Team Selection Test, 1

Let $a_{1}$, $a_{2}$, …, $a_{6}$; $b_{1}$, $b_{2}$, …, $b_{6}$ and $c_{1}$, $c_{2}$, …, $c_{6}$ are all permutations of $1$, $2$, …, $6$, respectively. Find the minimum value of $\sum_{i=1}^{6}a_{i}b_{i}c_{i}$.

Mid-Michigan MO, Grades 7-9, 2018

[b]p1.[/b] Is it possible to put $9$ numbers $1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9$ in a circle in a way such that the sum of any three circularly consecutive numbers is divisible by $3$ and is, moreover: a) greater than $9$ ? b) greater than $15$? [b]p2.[/b] You can cut the figure below along the sides of the small squares into several (at least two) identical pieces. What is the minimal number of such equal pieces? [img]https://cdn.artofproblemsolving.com/attachments/8/e/9cd09a04209774dab34bc7f989b79573453f35.png[/img] [b]p3.[/b] There are $100$ colored marbles in a box. It is known that among any set of ten marbles there are at least two marbles of the same color. Show that the box contains $12$ marbles of the same color. [b]p4.[/b] Is it possible to color squares of a $ 8\times 8$ board in white and black color in such a way that every square has exactly one black neighbor square separated by a side? [b]p5.[/b] In a basket, there are more than $80$ but no more than $200$ white, yellow, black, and red balls. Exactly $12\%$ are yellow, $20\%$ are black. Is it possible that exactly $2/3$ of the balls are white? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Iran MO (3rd Round), 6

The National Foundation of Happiness (NFoH) wants to estimate the happiness of people of country. NFoH selected $n$ random persons, and on every morning asked from each of them whether she is happy or not. On any two distinct days, exactly half of the persons gave the same answer. Show that after $k$ days, there were at most $n-\frac{n}{k}$ persons whose “yes” answers equals their “no” answers.

2024-IMOC, C5

Given integer $n\geq 2$, two invisible [color=#eee]rabbits[/color] (rabbits) discussed their strategy and was sent to two points $A, B$ with distance $n$ units on a plane, respectively. However, they do not know whether they are on the same or different side of the plane (when facing each other, the might view the left/right direction as the same or different). They both can see points $A,B$, and they need to hop to each other's starting point. Each hop would measure $1$ unit in distance, and they would jump and land at the same time for each round. However, if at any time they landed no more than $1$ unit away, they'll both turn into deer. Find the minimum number of round they need to reach their destiny while ensuring they won't turn into deer. [i]Proposed by redshrimp[/i]

1980 All Soviet Union Mathematical Olympiad, 296

An epidemic influenza broke out in the elves city. First day some of them were infected by the external source of infection and nobody later was infected by the external source. The elf is infected when visiting his ill friend. In spite of the situation every healthy elf visits all his ill friends every day. The elf is ill one day exactly, and has the immunity at least on the next day. There is no graftings in the city. Prove that a) If there were some elves immunised by the external source on the first day, the epidemic influenza can continue arbitrary long time. b) If nobody had the immunity on the first day, the epidemic influenza will stop some day.

2022 Balkan MO Shortlist, C2

Alice is drawing a shape on a piece of paper. She starts by placing her pencil at the origin, and then draws line segments of length one, alternating between vertical and horizontal segments. Eventually, her pencil returns to the origin, forming a closed, non-self-intersecting shape. Show that the area of this shape is even if and only if its perimeter is a multiple of eight.

1984 Tournament Of Towns, (064) O5

(a) On each square of a squared sheet of paper of size $20 \times 20$ there is a soldier. Vanya chooses a number $d$ and Petya moves the soldiers to new squares in such a way that each soldier is moved through a distance of at least $d$ (the distance being measured between the centres of the initial and the new squares) and each square is occupied by exactly one soldier. For which $d$ is this possible? (Give the maximum possible $d$, prove that it is possible to move the soldiers through distances not less than $d$ and prove that there is no greater $d$ for which this procedure may be carried out.) (b) Answer the same question as (a), but with a sheet of size $21 \times 21$. (SS Krotov, Moscow)

2018 Cono Sur Olympiad, 4

For each interger $n\geq 4$, we consider the $m$ subsets $A_1, A_2,\dots, A_m$ of $\{1, 2, 3,\dots, n\}$, such that $A_1$ has exactly one element, $A_2$ has exactly two elements,...., $A_m$ has exactly $m$ elements and none of these subsets is contained in any other set. Find the maximum value of $m$.

2018 Thailand TST, 2

Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir Alex is allowed to perform exactly one of the following two operations: [list=1] [*] Choose any number of the form $2^j$, where $j$ is a non-negative integer, and put it into an empty cell. [*] Choose two (not necessarily adjacent) cells with the same number in them; denote that number by $2^j$. Replace the number in one of the cells with $2^{j+1}$ and erase the number in the other cell. [/list] At the end of the game, one cell contains $2^n$, where $n$ is a given positive integer, while the other cells are empty. Determine the maximum number of moves that Sir Alex could have made, in terms of $n$. [i]Proposed by Warut Suksompong, Thailand[/i]

2016 Latvia National Olympiad, 3

Is it possible to insert numbers $1, \ldots, 16$ into a table $4 \times 4$ (each cell should have a different number) so that every two adjacent cells (i.e. cells sharing a common side) have numbers $a$ and $b$ satisfying\\ (a) $|a-b| \geq 6$\\ (b) $|a-b| \geq 7$

2024 India Iran Friendly Math Competition, 1

A league consists of $2024$ players. A [i]round[/i] involves splitting the players into two different teams and having every member of one team play with every member of the other team. A round is called [i]balanced[/i] if both teams have an equal number of players. A tournament consists of several rounds at the end of which any two players have played each other. The committee organised a tournament last year which consisted of $N$ rounds. Prove that the committee can organise a tournament this year with $N$ balanced rounds. [i]Proposed by Anant Mudgal and Navilarekallu Tejaswi[/i]

2018 China National Olympiad, 5

Let $n \geq 3$ be an odd number and suppose that each square in a $n \times n$ chessboard is colored either black or white. Two squares are considered adjacent if they are of the same color and share a common vertex and two squares $a,b$ are considered connected if there exists a sequence of squares $c_1,\ldots,c_k$ with $c_1 = a, c_k = b$ such that $c_i, c_{i+1}$ are adjacent for $i=1,2,\ldots,k-1$. \\ \\ Find the maximal number $M$ such that there exists a coloring admitting $M$ pairwise disconnected squares.

1996 Tournament Of Towns, (487) 5

A game is played between two players on a $10 \times 10$ checkerboard. They move alternately, the first player marking $X$s on vacant cells and the second $O$s. When all $100$ cells have been marked, they calculate two numbers $C$ and $Z$. $C$ is the total number of five consecutive $X$s in a row, a column or a diagonal, so that $6$ consecutive $X$s contribute a count of $2$ to $C$, $7$ consecutive $X$s contribute $3$, and so on. Similarly, $Z$ is the total number of five consecutive Os. The first player wins if $C > Z$, loses if $C < Z$ and draws if $C = Z$. Does the first player have a strategy which guarantees (a) a draw or a win (b) a win regardless of the counter-strategy of the second player? (A Belov)

2023 Thailand TSTST, 1

Let $C$ be a finite set of chords in a circle such that each chord passes through the midpoint of some other chord. Prove that any two of these chords intersect inside the circle.

2013 Moldova Team Selection Test, 2

Consider a board on $2013 \times 2013$ squares, what is the maximum number of chess knights that can be placed so that no $2$ attack each other?

2015 Tournament of Towns, 6

Basil has a melon in a shape of a ball, $20$ in diameter. Using a long knife, Basil makes three mutually perpendicular cuts. Each cut carves a circular segment in a plane of the cut, $h$ deep ($h$ is a height of the segment). Does it necessarily follow that the melon breaks into two or more pieces if (a) $h = 17$ ? [i](6 points)[/i] (b) $h = 18$ ? [i](6 points)[/i]

2022 India National Olympiad, 2

Find all natural numbers $n$ for which there is a permutation $\sigma$ of $\{1,2,\ldots, n\}$ that satisfies: \[ \sum_{i=1}^n \sigma(i)(-2)^{i-1}=0 \]

2011 NZMOC Camp Selection Problems, 3

Chris and Michael play a game on a board which is a rhombus of side length $n$ (a positive integer) consisting of two equilateral triangles, each of which has been divided into equilateral triangles of side length $ 1$. Each has a single token, initially on the leftmost and rightmost squares of the board, called the “home” squares (the illustration shows the case $n = 4$). [img]https://cdn.artofproblemsolving.com/attachments/e/b/8135203c22ce77c03c144850099ad1c575edb8.png[/img] A move consists of moving your token to an adjacent triangle (two triangles are adjacent only if they share a side). To win the game, you must either capture your opponent’s token (by moving to the triangle it occupies), or move on to your opponent’s home square. Supposing that Chris moves first, which, if any, player has a winning strategy?

2019 Iran Team Selection Test, 2

Hesam chose $10$ distinct positive integers and he gave all pairwise $\gcd$'s and pairwise ${\text lcm}$'s (a total of $90$ numbers) to Masoud. Can Masoud always find the first $10$ numbers, just by knowing these $90$ numbers? [i]Proposed by Morteza Saghafian [/i]

2020 Balkan MO, 3

Let $k$ be a positive integer. Determine the least positive integer $n$, with $n\geq k+1$, for which the game below can be played indefinitely: Consider $n$ boxes, labelled $b_1,b_2,...,b_n$. For each index $i$, box $b_i$ contains exactly $i$ coins. At each step, the following three substeps are performed in order: [b](1)[/b] Choose $k+1$ boxes; [b](2)[/b] Of these $k+1$ boxes, choose $k$ and remove at least half of the coins from each, and add to the remaining box, if labelled $b_i$, a number of $i$ coins. [b](3)[/b] If one of the boxes is left empty, the game ends; otherwise, go to the next step. [i]Proposed by Demetres Christofides, Cyprus[/i]

2022 Middle European Mathematical Olympiad, 2

Let $n$ be a positive integer. Anna and Beatrice play a game with a deck of $n$ cards labelled with the numbers $1, 2,...,n$. Initially, the deck is shuffled. The players take turns, starting with Anna. At each turn, if $k$ denotes the number written on the topmost card, then the player first looks at all the cards and then rearranges the $k$ topmost cards. If, after rearranging, the topmost card shows the number k again, then the player has lost and the game ends. Otherwise, the turn of the other player begins. Determine, depending on the initial shuffle, if either player has a winning strategy, and if so, who does.

Russian TST 2018, P4

The natural numbers $k \geqslant n$ are given. Peter has $n{}$ objects and $N{}$ special ways in which he likes to lay them out in a row from left to right. He noticed that for any non-empty subset $A{}$ of these objects containing $|A| \leqslant k$ objects, and any element $a\in A$, there are exactly $N/|A|$ special ways for which element $a{}$ is the leftmost in the set $A{}$. Prove that, under the same conditions on $A{}$ and $a{}$, for any integer $m =1,2,\ldots,|A|$ there are exactly $N/|A|$ special ways for which the element $a{}$ is the $m^{\text{th}}$ from the left in the set $A{}$.

2010 HMNT, 7

George has two coins, one of which is fair and the other of which always comes up heads. Jacob takes one of them at random and flips it twice. Given that it came up heads both times, what is the probability that it is the coin that always comes up heads?

1987 Tournament Of Towns, (161) 5

Consider the set of all pairs of positive integers $(A , B)$ in which $A < B$ . Some of these pairs are to $be$ designated as "black" , while the remainder are to be designated as "white" . Is it possible to designate these pairs in such a way that for any triple of positive integers of form $A, A + D, A + 2D$, in which $D > 0$, the associated pairs $(A, A + D )$ , $(A , A + 2D)$ and $(A + D, A + 2D)$ would include at least one pair of each colour?