This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2025 239 Open Mathematical Olympiad, 1

There are $100$ points on the plane, all pairwise distances between which are different. Is there always a polyline with vertices at these points, passing through each point once, in which the link lengths increase monotonously?

2023 Thailand Online MO, 10

Let $n$ be an even positive integer. Alice and Bob play the following game. Before the start of the game, Alice chooses a set $S$ containing $m$ integers and announces it to Bob. The players then alternate turns, with Bob going first, choosing $i\in\{1,2,\dots, n\}$ that has not been chosen and setting the value of $v_i$ to either $0$ or $1$. At the end of the game, when all of $v_1,v_2,\dots,v_n$ have been set, the expression $$E=v_1\cdot 2^0 + v_2 \cdot 2^1 + \dots + v_n \cdot 2^{n-1}$$ is calculated. Determine the minimum $m$ such that Alice can always ensure that $E\in S$ regardless of how Bob plays.

1998 USAMO, 4

A computer screen shows a $98 \times 98$ chessboard, colored in the usual way. One can select with a mouse any rectangle with sides on the lines of the chessboard and click the mouse button: as a result, the colors in the selected rectangle switch (black becomes white, white becomes black). Find, with proof, the minimum number of mouse clicks needed to make the chessboard all one color.

2019 MOAA, Accuracy

[b]p1.[/b] Farmer John wants to bring some cows to a pasture with grass that grows at a constant rate. Initially, the pasture has some nonzero amount of grass and it will stop growing if there is no grass left. The pasture sustains $100$ cows for ten days. The pasture can also sustain $100$ cows for five days, and then $120$ cows for three more days. If cows eat at a constant rate, fund the maximum number of cows Farmer John can bring to the pasture so that they can be sustained indefinitely. [b]p2.[/b] Sam is learning basic arithmetic. He may place either the operation $+$ or $-$ in each of the blank spots between the numbers below: $$5\,\, \_ \,\, 8\,\, \_ \,\,9\,\, \_ \,\,7\,\,\_ \,\,2\,\,\_ \,\,3$$ In how many ways can he place the operations so the result is divisible by $3$? [b]p3.[/b] Will loves the color blue, but he despises the color red. In the $5\times 6$ rectangular grid below, how many rectangles are there containing at most one red square and with sides contained in the gridlines? [img]https://cdn.artofproblemsolving.com/attachments/1/7/7ce55bdc9e05c7c514dddc7f8194f3031b93c4.png[/img] [b]p4.[/b] Let $r_1, r_2, r_3$ be the three roots of a cubic polynomial $P(x)$. Suppose that $$\frac{P(2) + P(-2)}{P(0)}= 200.$$ If $\frac{1}{r_1r_2}+ \frac{1}{r_2r_3}+\frac{1}{r_3r_1}= \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$. [b]p5.[/b] Consider a rectangle $ABCD$ with $AB = 3$ and $BC = 1$. Let $O$ be the intersection of diagonals $AC$ and $BD$. Suppose that the circumcircle of $ \vartriangle ADO$ intersects line $AB$ again at $E \ne A$. Then, the length $BE$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$. [b]p6.[/b] Let $ABCD$ be a square with side length $100$ and $M$ be the midpoint of side $AB$. The circle with center $M$ and radius $50$ intersects the circle with center $D$ and radius $100$ at point $E$. $CE$ intersects $AB$ at $F$. If $AF = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$. [b]p7.[/b] How many pairs of real numbers $(x, y)$, with $0 < x, y < 1$ satisfy the property that both $3x + 5y$ and $5x + 2y$ are integers? [b]p8.[/b] Sebastian is coloring a circular spinner with $4$ congruent sections. He randomly chooses one of four colors for each of the sections. If two or more adjacent sections have the same color, he fuses them and considers them as one section. (Sections meeting at only one point are not adjacent.) Suppose that the expected number of sections in the final colored spinner is equal to $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$. [b]p9.[/b] Let $ABC$ be a triangle and $D$ be a point on the extension of segment $BC$ past $C$. Let the line through $A$ perpendicular to $BC$ be $\ell$. The line through $B$ perpendicular to $AD$ and the line through $C$ perpendicular to $AD$ intersect $\ell$ at $H_1$ and $H_2$, respectively. If $AB = 13$, $BC = 14$, $CA = 15$, and $H_1H_2 = 1001$, find $CD$. [b]p10.[/b] Find the sum of all positive integers $k$ such that $$\frac21 -\frac{3}{2 \times 1}+\frac{4}{3\times 2\times 1} + ...+ (-1)^{k+1} \frac{k+1}{k\times (k - 1)\times ... \times 2\times 1} \ge 1 + \frac{1}{700^3}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 India National Olympiad, 5

Euler marks $n$ different points in the Euclidean plane. For each pair of marked points, Gauss writes down the number $\lfloor \log_2 d \rfloor$ where $d$ is the distance between the two points. Prove that Gauss writes down less than $2n$ distinct values. [i]Note:[/i] For any $d>0$, $\lfloor \log_2 d\rfloor$ is the unique integer $k$ such that $2^k\le d<2^{k+1}$. [i]Proposed by Pranjal Srivastava[/i]

2002 Poland - Second Round, 3

A positive integer $ n$ is given. In an association consisting of $ n$ members work $ 6$ commissions. Each commission contains at least $ \large \frac{n}{4}$ persons. Prove that there exist two commissions containing at least $ \large \frac{n}{30}$ persons in common.

2016 Vietnam Team Selection Test, 2

Let $A$ be a set contains $2000$ distinct integers and $B$ be a set contains $2016$ distinct integers. $K$ is the numbers of pairs $(m,n)$ satisfying \[ \begin{cases} m\in A, n\in B\\ |m-n|\leq 1000 \end{cases} \] Find the maximum value of $K$

2005 Greece Team Selection Test, 4

There are $10001$ students at an university. Some students join together to form several clubs (a student may belong to different clubs). Some clubs join together to form several societies (a club may belong to different societies). There are a total of $k$ societies. Suppose that the following conditions hold: [i]i.)[/i] Each pair of students are in exactly one club. [i]ii.)[/i] For each student and each society, the student is in exactly one club of the society. [i]iii.)[/i] Each club has an odd number of students. In addition, a club with ${2m+1}$ students ($m$ is a positive integer) is in exactly $m$ societies. Find all possible values of $k$. [i]Proposed by Guihua Gong, Puerto Rico[/i]

2025 Harvard-MIT Mathematics Tournament, 6

Compute the number of ways to pick two rectangles in a $5 \times 5$ grid of squares such that the edges of the rectangles lie on the lines of the grid and the rectangles do not overlap at their interiors, edges, or vertices. The order in which the rectangles are chosen does not matter.

2025 Kyiv City MO Round 1, Problem 2

Is it possible to write positive integers from $1$ to $2025$ in the cells of a \( 45 \times 45 \) grid such that each number is used exactly once, and at the same time, each written number is either greater than all the numbers located in its side-adjacent cells or smaller than all the numbers located in its side-adjacent cells? [i]Proposed by Anton Trygub[/i]

2021 Dutch BxMO TST, 4

Jesse and Tjeerd are playing a game. Jesse has access to $n\ge 2$ stones. There are two boxes: in the black box there is room for half of the stones (rounded down) and in the white box there is room for half of the stones (rounded up). Jesse and Tjeerd take turns, with Jesse starting. Jesse grabs in his turn, always one new stone, writes a positive real number on the stone and places put him in one of the boxes that isn't full yet. Tjeerd sees all these numbers on the stones in the boxes and on his turn may move any stone from one box to the other box if it is not yet full, but he may also choose to do nothing. The game stops when both boxes are full. If then the total value of the stones in the black box is greater than the total value of the stones in the white box, Jesse wins; otherwise win Tjeerd. For every $n \ge 2$, determine who can definitely win (and give a corresponding winning strategy).

LMT Speed Rounds, 21

Let $(a_1,a_2,a_3,a_4,a_5)$ be a random permutation of the integers from $1$ to $5$ inclusive. Find the expected value of $$\sum^5_{i=1} |a_i -i | = |a_1 -1|+|a_2 -2|+|a_3 -3|+|a_4 -4|+|a_5 -5|.$$ [i]Proposed by Muztaba Syed[/i]

2016 Bulgaria EGMO TST, 1

Is it possible to partition the set of integers into three disjoint sets so that for every positive integer $n$ the numbers $n$, $n-50$ and $n+1987$ belong to different sets?

1992 IMO Shortlist, 4

Consider $9$ points in space, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either colored blue or red or left uncolored. Find the smallest value of $\,n\,$ such that whenever exactly $\,n\,$ edges are colored, the set of colored edges necessarily contains a triangle all of whose edges have the same color.

2022/2023 Tournament of Towns, P1

One hundred friends, including Alice and Bob, live in several cities. Alice has determined the distance from her city to the city of each of the other 99 friends and totaled these 99 numbers. Alice’s total is 1000 km. Bob similarly totaled his distances to everyone else. What is the largest total that Bob could have obtained? (Consider the cities as points on the plane; if two people live in the same city, the distance between their cities is considered zero).

2021 Durer Math Competition Finals, 5

Joe, who is already feared by all bandits in the Wild West, would like to officially become a sheriff. To do that, he has to take a special exam where he has to demonstrate his talent in three different areas: tracking, shooting and lasso throwing. He successfully completes each task with a given probability, independently of each other. He passes the exam if he can complete at least two of the tasks successfully. Joe calculated that in case he starts with tracking and completes it successfully, his chance of passing the exam is $32\%$. If he starts with successful shooting, the chance of passing is $49\%$, whereas if he starts with successful lasso throwing, he passes with probability $52\%$. The overall probability of passing (calculated before the start of the exam) is $X/1000$ . What is the value of $X$?

2000 Estonia National Olympiad, 5

Mathematicians $M$ and $N$ each have their own favorite collection of manuals on the book, which he often uses in his work. Once they decided to make a statement in which each mathematician proves at each turn any theorem from his handbook which neither has yet been proven. Everything is done in turn, the mathematician starts $M$. The theorems of the handbook can win first all proven; if the theorems of both manuals can proved at once, wins the last theorem proved by a mathematician. Let $m$ be a theorem in the mathematician's handbook $M$. Find all values of $m$ for which the mathematician $M$ has a winning strategy if is It is known that there are $222$ theorems in the mathematician's handbook $N$ and $101$ of them also appears in the mathematician's $M$ handbook.

1985 USAMO, 3

Let $A,B,C,D$ denote four points in space such that at most one of the distances $AB,AC,AD,BC,BD,CD$ is greater than $1$. Determine the maximum value of the sum of the six distances.

2015 Azerbaijan IMO TST, 1

We say that $A$$=${$a_1,a_2,a_3\cdots a_n$} consisting $n>2$ distinct positive integers is $good$ if for every $i=1,2,3\cdots n$ the number ${a_i}^{2015}$ is divisible by the product of all numbers in $A$ except $a_i$. Find all integers $n>2$ such that exists a $good$ set consisting of $n$ positive integers.

2012 Argentina Cono Sur TST, 3

$16$ people sit around a circular table. After some time, they all stand up and sit down in either the chair they were previously sitting on or on a chair next to it. Determine the number of ways that this can be done. Note: two or more people cannot sit on the same chair.

2010 India IMO Training Camp, 3

For any integer $n\ge 2$, let $N(n)$ be the maximum number of triples $(a_j,b_j,c_j),j=1,2,3,\cdots ,N(n),$ consisting of non-negative integers $a_j,b_j,c_j$ (not necessarily distinct) such that the following two conditions are satisfied: (a) $a_j+b_j+c_j=n,$ for all $j=1,2,3,\cdots N(n)$; (b) $j\neq k$, then $a_j\neq a_k$, $b_j\neq b_k$ and $c_j\neq c_k$. Determine $N(n)$ for all $n\ge 2$.

2021 ELMO Problems, 3

Each cell of a $100\times 100$ grid is colored with one of $101$ colors. A cell is [i]diverse[/i] if, among the $199$ cells in its row or column, every color appears at least once. Determine the maximum possible number of diverse cells.

2012 Princeton University Math Competition, A7 / B8

A PUMaC grader is grading the submissions of forty students $s_1, s_2, ..., s_{40}$ for the individual finals round, which has three problems. After grading a problem of student $s_i$, the grader either: $\bullet$ grades another problem of the same student, or $\bullet$ grades the same problem of the student $s_{i-1}$ or $s_{i+1}$ (if $i > 1$ and $i < 40$, respectively). He grades each problem exactly once, starting with the first problem of $s_1$ and ending with the third problem of $s_{40}$. Let $N$ be the number of different orders the grader may grade the students’ problems in this way. Find the remainder when $N$ is divided by $100$.

2014 Greece JBMO TST, 4

Givan the set $S = \{1,2,3,....,n\}$. We want to partition the set $S$ into three subsets $A,B,C$ disjoint (to each other) with $A\cup B\cup C=S$ , such that the sums of their elements $S_{A} S_{B} S_{C}$ to be equal .Examine if this is possible when: a) $n=2014$ b) $n=2015 $ c) $n=2018$

2018 MOAA, Sets 1-6

[u]Set 1[/u] [b]p1.[/b] Find $1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11$. [b]p2.[/b] Find $1 \cdot 11 + 2 \cdot 10 + 3 \cdot 9 + 4 \cdot 8 + 5 \cdot 7 + 6 \cdot 6$. [b]p3.[/b] Let $\frac{1}{1\cdot 2} +\frac{1}{2\cdot 3} +\frac{1}{3\cdot 4} +\frac{1}{4\cdot 5} +\frac{1}{5\cdot 6} +\frac{1}{6\cdot 7} +\frac{1}{7\cdot 8} +\frac{1}{8\cdot 9} +\frac{1}{9\cdot 10} +\frac{1}{10\cdot 11} =\frac{m}{n}$ , where $m$ and $n$ are positive integers that share no prime divisors. Find $m + n$. [u]Set 2[/u] [b]p4.[/b] Define $0! = 1$ and let $n! = n \cdot (n - 1)!$ for all positive integers $n$. Find the value of $(2! + 0!)(1! + 8!)$. [b]p5.[/b] Rachel’s favorite number is a positive integer $n$. She gives Justin three clues about it: $\bullet$ $n$ is prime. $\bullet$ $n^2 - 5n + 6 \ne 0$. $\bullet$ $n$ is a divisor of $252$. What is Rachel’s favorite number? [b]p6.[/b] Shen eats eleven blueberries on Monday. Each day after that, he eats five more blueberries than the day before. For example, Shen eats sixteen blueberries on Tuesday. How many blueberries has Shen eaten in total before he eats on the subsequent Monday? [u]Set 3[/u] [b]p7.[/b] Triangle $ABC$ satisfies $AB = 7$, $BC = 12$, and $CA = 13$. If the area of $ABC$ can be expressed in the form $m\sqrt{n}$, where $n$ is not divisible by the square of a prime, then determine $m + n$. [b]p8.[/b] Sebastian is playing the game Split! on a coordinate plane. He begins the game with one token at $(0, 0)$. For each move, he is allowed to select a token on any point $(x, y)$ and take it off the plane, replacing it with two tokens, one at $(x + 1, y)$, and one at $(x, y + 1)$. At the end of the game, for a token on $(a, b)$, it is assigned a score $\frac{1}{2^{a+b}}$ . These scores are summed for his total score. Determine the highest total score Sebastian can get in $100$ moves. [b]p9.[/b] Find the number of positive integers $n$ satisfying the following two properties: $\bullet$ $n$ has either four or five digits, where leading zeros are not permitted, $\bullet$ The sum of the digits of $n$ is a multiple of $3$. [u]Set 4[/u] [b]p10.[/b] [i]A unit square rotated $45^o$ about a vertex, Sweeps the area for Farmer Khiem’s pen. If $n$ is the space the pigs can roam, Determine the floor of $100n$.[/i] If $n$ is the area a unit square sweeps out when rotated 4$5$ degrees about a vertex, determine $\lfloor 100n \rfloor$. Here $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. [img]https://cdn.artofproblemsolving.com/attachments/b/1/129efd0dbd56dc0b4fb742ac80eaf2447e106d.png[/img] [b]p11.[/b][i] Michael is planting four trees, In a grid, three rows of three, If two trees are close, Then both are bulldozed, So how many ways can it be?[/i] In a three by three grid of squares, determine the number of ways to select four squares such that no two share a side. [b]p12.[/b] [i]Three sixty-seven Are the last three digits of $n$ cubed. What is $n$?[/i] If the last three digits of $n^3$ are $367$ for a positive integer $n$ less than $1000$, determine $n$. [u]Set 5[/u] [b]p13.[/b] Determine $\sqrt[4]{97 + 56\sqrt{3}} + \sqrt[4]{97 - 56\sqrt{3}}$. [b]p14. [/b]Triangle $\vartriangle ABC$ is inscribed in a circle $\omega$ of radius $12$ so that $\angle B = 68^o$ and $\angle C = 64^o$ . The perpendicular from $A$ to $BC$ intersects $\omega$ at $D$, and the angle bisector of $\angle B$ intersects $\omega$ at $E$. What is the value of $DE^2$? [b]p15.[/b] Determine the sum of all positive integers $n$ such that $4n^4 + 1$ is prime. [u]Set 6[/u] [b]p16.[/b] Suppose that $p, q, r$ are primes such that $pqr = 11(p + q + r)$ such that $p\ge q \ge r$. Determine the sum of all possible values of $p$. [b]p17.[/b] Let the operation $\oplus$ satisfy $a \oplus b =\frac{1}{1/a+1/b}$ . Suppose $$N = (...((2 \oplus 2) \oplus 2) \oplus ... 2),$$ where there are $2018$ instances of $\oplus$ . If $N$ can be expressed in the form $m/n$, where $m$ and $n$ are relatively prime positive integers, then determine $m + n$. [b]p18.[/b] What is the remainder when $\frac{2018^{1001} - 1}{2017}$ is divided by $2017$? PS. You had better use hide for answers. Last sets have been posted [url=https://artofproblemsolving.com/community/c4h2777307p24369763]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].