Found problems: 14842
2011 Armenian Republican Olympiads, Problem 6
Find the smallest $n$ such that in an $8\times 8$ chessboard any $n$ cells contain two cells which are at least $3$ knight moves apart from each other.
2006 South East Mathematical Olympiad, 3
There is a standard deck of $52$ cards without jokers. The deck consists of four suits(diamond, club, heart, spade) which include thirteen cards in each. For each suit, all thirteen cards are ranked from “$2$” to “$A$” (i.e. $2, 3,\ldots , Q, K, A$). A pair of cards is called a “[i]straight flush[/i]” if these two cards belong to the same suit and their ranks are adjacent. Additionally, "$A$" and "$2$" are considered to be adjacent (i.e. "A" is also considered as "$1$"). For example, spade $A$ and spade $2$ form a “[i]straight flush[/i]”; diamond $10$ and diamond $Q$ are not a “[i]straight flush[/i]” pair. Determine how many ways of picking thirteen cards out of the deck such that all ranks are included but no “[i]straight flush[/i]” exists in them.
2017 Romanian Master of Mathematics, 3
Let $n$ be an integer greater than $1$ and let $X$ be an $n$-element set. A non-empty collection of subsets $A_1, ..., A_k$ of $X$ is tight if the union $A_1 \cup \cdots \cup A_k$ is a proper subset of $X$ and no element of $X$ lies in exactly one of the $A_i$s. Find the largest cardinality of a collection of proper non-empty subsets of $X$, no non-empty subcollection of which is tight.
[i]Note[/i]. A subset $A$ of $X$ is proper if $A\neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.
2025 Philippine MO, P1
The set $S$ is a subset of $\{1, 2, \dots, 2025\}$ such that no two elements of $S$ differ by $2$ or by $7$. What is the largest number of elements that $S$ can have?
2007 Junior Balkan Team Selection Tests - Romania, 3
A rectangularly paper is divided in polygons areas in the following way: at every step one of the existing surfaces is cut by a straight line, obtaining two new areas. Which is the minimum number of cuts needed such that between the obtained polygons there exists $251$ polygons with $11$ sides?
2023 CUBRMC, 3
Two buckets each have four balls; two red balls and two white balls in the first, and two red balls and two blue balls in the second. At first, a bucket is selected, then a ball in the bucket is selected, with both buckets and balls inside the selected bucket having equal probability of being chosen. Then, without replacement of the first ball, the process is repeated once more. Determine the probability that the first ball drawn being red if the second ball drawn was blue.
2003 All-Russian Olympiad Regional Round, 10.7
Prove that from an arbitrary set of three-digit numbers, including at least four numbers that are mutually prime, you can choose four numbers that are also mutually prime
2011 Tournament of Towns, 6
Two ants crawl along the sides of the $49$ squares of a $7 * 7$ board. Each ant passes through
all $64$ vertices exactly once and returns to its starting point. What is the smallest possible
number of sides covered by both ants?
2015 Middle European Mathematical Olympiad, 4
Let $N$ be a positive integer. In each of the $N^2$ unit squares of an $N\times N$ board, one of the two diagonals is drawn. The drawn diagonals divide the $N\times N$ board into $K$ regions. For each $N$, determine the smallest and the largest possible values of $K$.
[asy]
draw((0,0)--(3,0)--(3,3)--(0,3)--cycle);
draw((1,0)--(1,3), dotted);
draw((2,0)--(2,3), dotted);
draw((0,1)--(3,1), dotted);
draw((0,2)--(3,2), dotted);
draw((1,0)--(0,1)--(2,3)--(3,2)--(2,1)--(0,3));
draw((1,1)--(2,0)--(3,1));
label("$1$",(0.35,2));
label("$2$",(1,2.65));
label("$3$",(2,2));
label("$4$",(2.65,2.65));
label("$5$",(0.35,0.35));
label("$6$",(1.3,1.3));
label("$7$",(2.65,0.35));
label("Example with $N=3$, $K=7$",(0,-0.3)--(3,-0.3),S);
[/asy]
2020 Iran RMM TST, 3
There are n stations $1,2,...,n$ in a broken road (like in Cars) in that order such that the distance between station $i$ and $i+1$ is one unit. The distance betwen two positions of cars is the minimum units needed to be fixed so that every car can go from its place in the first position to its place in the second (two cars can be in the same station in a position). Prove that for every $\alpha<1$ thre exist $n$ and $100^n$ positions such that the distance of every two position is at least $n\alpha$.
2003 Cono Sur Olympiad, 5
Let $n=3k+1$, where $k$ is a positive integer. A triangular arrangement of side $n$ is formed using circles with the same radius, as is shown in the figure for $n=7$.
Determine, for each $k$, the largest number of circles that can be colored red in such a way that there are no two mutually tangent circles that are both colored red.
2017 Kyiv Mathematical Festival, 1
Several dwarves were lined up in a row, and then they lined up in a row in a different order. Is it possible that exactly one third of the dwarves have two new neighbours and exactly one third of the dwarves have only one new neighbour, if the number of the dwarves is a) 9; b) 12?
1980 Swedish Mathematical Competition, 2
$a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $a_6$, $a_7$ and $b_1$, $b_2$, $b_3$, $b_4$, $b_5$, $b_6$, $b_7$ are two permutations of $1, 2, 3, 4, 5, 6, 7$. Show that $|a_1 - b_1|$, $|a_2 - b_2|$, $|a_3 - b_3|$, $|a_4 - b_4|$, $|a_5 - b_5|$, $|a_6 - b_6|$, $|a_7 - b_7|$ are not all different.
2017 LMT, Team Round
[b]p1.[/b] Suppose that $20\%$ of a number is $17$. Find $20\%$ of $17\%$ of the number.
[b]p2.[/b] Let $A, B, C, D$ represent the numbers $1$ through $4$ in some order, with $A \ne 1$. Find the maximum possible value of $\frac{\log_A B}{C +D}$.
Here, $\log_A B$ is the unique real number $X$ such that $A^X = B$.
[b]p3. [/b]There are six points in a plane, no four of which are collinear. A line is formed connecting every pair of points. Find the smallest possible number of distinct lines formed.
[b]p4.[/b] Let $a,b,c$ be real numbers which satisfy $$\frac{2017}{a}= a(b +c),
\frac{2017}{b}= b(a +c),
\frac{2017}{c}= c(a +b).$$ Find the sum of all possible values of $abc$.
[b]p5.[/b] Let $a$ and $b$ be complex numbers such that $ab + a +b = (a +b +1)(a +b +3)$. Find all possible values of $\frac{a+1}{b+1}$.
[b]p6.[/b] Let $\vartriangle ABC$ be a triangle. Let $X,Y,Z$ be points on lines $BC$, $CA$, and $AB$, respectively, such that $X$ lies on segment $BC$, $B$ lies on segment $AY$ , and $C$ lies on segment $AZ$. Suppose that the circumcircle of $\vartriangle XYZ$ is tangent to lines $AB$, $BC$, and $CA$ with center $I_A$. If $AB = 20$ and $I_AC = AC = 17$ then compute the length of segment $BC$.
[b]p7. [/b]An ant makes $4034$ moves on a coordinate plane, beginning at the point $(0, 0)$ and ending at $(2017, 2017)$. Each move consists of moving one unit in a direction parallel to one of the axes. Suppose that the ant stays within the region $|x - y| \le 2$. Let N be the number of paths the ant can take. Find the remainder when $N$ is divided by $1000$.
[b]p8.[/b] A $10$ digit positive integer $\overline{a_9a_8a_7...a_1a_0}$ with $a_9$ nonzero is called [i]deceptive [/i] if there exist distinct indices $i > j$ such that $\overline{a_i a_j} = 37$. Find the number of deceptive positive integers.
[b]p9.[/b] A circle passing through the points $(2, 0)$ and $(1, 7)$ is tangent to the $y$-axis at $(0, r )$. Find all possible values of $ r$.
[b]p10.[/b] An ellipse with major and minor axes $20$ and $17$, respectively, is inscribed in a square whose diagonals coincide with the axes of the ellipse. Find the area of the square.
PS. You had better use hide for answers.
2022 Caucasus Mathematical Olympiad, 1
Given a rectangular table with 2 rows and 100 columns. Dima fills the cells of the first row with numbers 1, 2 or 3. Prove that Alex can fill the cells of the second row with numbers 1, 2, 3 in such a way that the numbers in each column are different and the sum of the numbers in the second row equals 200.
2020 Canada National Olympiad, 5
Simple graph $G$ has $19998$ vertices. For any subgraph $\bar G$ of $G$ with $9999$ vertices, $\bar G$ has at least $9999$ edges. Find the minimum number of edges in $G$
2010 Singapore Senior Math Olympiad, 5
Let $p$ be a prime number and let $a_1,a_2,\dots,a_k$ be distinct integers chosen from $1,2,\dots,p-1$. For $1\le i \le k$, let $f_i^{(n)}$ denote the remainder of the integer $na_1$ upon division by $p$, so $0\le f_i^{(n)}<p$. Define
$S=\{n:1\le n \le p-1,f_1^{(n)}<\dots<f_k^{(n)}\}$
Show that $S$ has less than $\frac{2p}{k+1}$ elements.
2016 Federal Competition For Advanced Students, P2, 3
Consider arrangements of the numbers $1$ through $64$ on the squares of an $8\times 8$ chess board, where each square contains exactly one number and each number appears exactly once.
A number in such an arrangement is called super-plus-good, if it is the largest number in its row and at the same time the smallest number in its column. Prove or disprove each of the following statements:
(a) Each such arrangement contains at least one super-plus-good number.
(b) Each such arrangement contains at most one super-plus-good number.
Proposed by Gerhard J. Woeginger
2014 Korea - Final Round, 3
There are $n$ students sitting on a round table. You collect all of $ n $ name tags and give them back arbitrarily. Each student gets one of $n$ name tags. Now $n$ students repeat following operation:
The students who have their own name tags exit the table. The other students give their name tags to the student who is sitting right to him.
Find the number of ways giving name tags such that there exist a student who don't exit the table after 4 operations.
2004 Dutch Mathematical Olympiad, 3
Start with a stack of $100$ cards.
Now repeat the following: choose a stack of at least $2$ cards and split them into two smaller piles (at least $1$ card of each). Continue this until there are finally $100$ stacks of $1$ card each. Every time you split a pile into two stacks you get a number of points that is equal to the product of the number of cards in the two new stacks.
What is the maximum number of points that you can earn in total?
ABMC Team Rounds, 2021
[u]Round 5[/u]
[b]5.1.[/b] Julia baked a pie for herself to celebrate pi day this year. If Julia bakes anyone pie on pi day, the following year on pi day she bakes a pie for herself with $1/3$ probability, she bakes her friend a pie with $1/6$ probability, and she doesn't bake anyone a pie with $1/2$ probability. However, if Julia doesn't make pie on pi day, the following year on pi day she bakes a pie for herself with $1/2$ probability, she bakes her friend a pie with $1/3$ probability, and she doesn't bake anyone a pie with $1/6$ probability. The probability that Julia bakes at least $2$ pies on pi day in the next $5$ years can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$.
[b]5.2.[/b] Steven is flipping a coin but doesn't want to appear too lucky. If he ips the coin $8$ times, the probability he only gets sequences of consecutive heads or consecutive tails that are of length $4$ or less can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$.
[b]5.3.[/b] Let $ABCD$ be a square with side length $3$. Further, let $E$ be a point on side$ AD$, such that $AE = 2$ and $DE = 1$, and let $F$ be the point on side $AB$ such that triangle $CEF$ is right with hypotenuse $CF$. The value $CF^2$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$.
[u]Round 6[/u]
[b]6.1.[/b] Let $P$ be a point outside circle $\omega$ with center $O$. Let $A,B$ be points on circle $\omega$ such that $PB$ is a tangent to $\omega$ and $PA = AB$. Let $M$ be the midpoint of $AB$. Given $OM = 1$, $PB = 3$, the value of $AB^2$ can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]6.2.[/b] Let $a_0, a_1, a_2,...$with each term defined as $a_n = 3a_{n-1} + 5a_{n-2}$ and $a_0 = 0$, $a_1 = 1$. Find the remainder when $a_{2020}$ is divided by $360$.
[b]6.3.[/b] James and Charles each randomly pick two points on distinct sides of a square, and they each connect their chosen pair of points with a line segment. The probability that the two line segments intersect can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[u]Round 7[/u]
[b]7.1.[/b] For some positive integers $x, y$ let $g = gcd (x, y)$ and $\ell = lcm (2x, y)$: Given that the equation $xy+3g+7\ell = 168$ holds, find the largest possible value of $2x + y$.
[b]7.2.[/b] Marco writes the polynomials $$f(x) = nx^4 +2x^3 +3x^2 +4x+5$$ and $$g(x) = a(x-1)^4 +b(x-1)^3 +6(x-1)^2 + d(x - 1) + e,$$ where $n, a, b, d, e$ are real numbers. He notices that $g(i) = f(i) - |i|$ for each integer $i$ satisfying $-5 \le i \le -1$. Then $n^2$ can be expressed as $p/q$ for relatively prime positive integers $p, q$. Find $p + q$.
[b]7.3. [/b]Equilateral $\vartriangle ABC$ is inscribed in a circle with center $O$. Points $D$ and $E$ are chosen on minor arcs $AB$ and $BC$, respectively. Segment $\overline{CD}$ intersects $\overline{AB}$ and $\overline{AE}$ at $Y$ and $X$, respectively. Given that $\vartriangle DXE$ and $\vartriangle AXC$ have equal area, $\vartriangle AXY$ has area $ 1$, and $\vartriangle ABC$ has area $52$, find the area of $\vartriangle BXC$.
[u]Round 8[/u]
[b]8.[/b] Let $A$ be the number of total webpage visits our website received last month. Let $B$ be the number photos in our photo collection from ABMC onsite 2017. Let $M$ be the mean speed round score. Further, let $C$ be the number of times the letter c appears in our problem bank. Estimate
$$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766251p24226451]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
MOAA Accuracy Rounds, 2019
[b]p1.[/b] Farmer John wants to bring some cows to a pasture with grass that grows at a constant rate. Initially, the pasture has some nonzero amount of grass and it will stop growing if there is no grass left. The pasture sustains $100$ cows for ten days. The pasture can also sustain $100$ cows for five days, and then $120$ cows for three more days. If cows eat at a constant rate, fund the maximum number of cows Farmer John can bring to the pasture so that they can be sustained indefinitely.
[b]p2.[/b] Sam is learning basic arithmetic. He may place either the operation $+$ or $-$ in each of the blank spots between the numbers below: $$5\,\, \_ \,\, 8\,\, \_ \,\,9\,\, \_ \,\,7\,\,\_ \,\,2\,\,\_ \,\,3$$ In how many ways can he place the operations so the result is divisible by $3$?
[b]p3.[/b] Will loves the color blue, but he despises the color red. In the $5\times 6$ rectangular grid below, how many rectangles are there containing at most one red square and with sides contained in the gridlines?
[img]https://cdn.artofproblemsolving.com/attachments/1/7/7ce55bdc9e05c7c514dddc7f8194f3031b93c4.png[/img]
[b]p4.[/b] Let $r_1, r_2, r_3$ be the three roots of a cubic polynomial $P(x)$. Suppose that $$\frac{P(2) + P(-2)}{P(0)}= 200.$$ If $\frac{1}{r_1r_2}+ \frac{1}{r_2r_3}+\frac{1}{r_3r_1}= \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$.
[b]p5.[/b] Consider a rectangle $ABCD$ with $AB = 3$ and $BC = 1$. Let $O$ be the intersection of diagonals $AC$ and $BD$. Suppose that the circumcircle of $ \vartriangle ADO$ intersects line $AB$ again at $E \ne A$. Then, the length $BE$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
[b]p6.[/b] Let $ABCD$ be a square with side length $100$ and $M$ be the midpoint of side $AB$. The circle with center $M$ and radius $50$ intersects the circle with center $D$ and radius $100$ at point $E$. $CE$ intersects $AB$ at $F$. If $AF = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$.
[b]p7.[/b] How many pairs of real numbers $(x, y)$, with $0 < x, y < 1$ satisfy the property that both $3x + 5y$ and $5x + 2y$ are integers?
[b]p8.[/b] Sebastian is coloring a circular spinner with $4$ congruent sections. He randomly chooses one of four colors for each of the sections. If two or more adjacent sections have the same color, he fuses them and considers them as one section. (Sections meeting at only one point are not adjacent.) Suppose that the expected number of sections in the final colored spinner is equal to $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$.
[b]p9.[/b] Let $ABC$ be a triangle and $D$ be a point on the extension of segment $BC$ past $C$. Let the line through $A$ perpendicular to $BC$ be $\ell$. The line through $B$ perpendicular to $AD$ and the line through $C$ perpendicular to $AD$ intersect $\ell$ at $H_1$ and $H_2$, respectively. If $AB = 13$, $BC = 14$, $CA = 15$, and $H_1H_2 = 1001$, find $CD$.
[b]p10.[/b] Find the sum of all positive integers $k$ such that
$$\frac21 -\frac{3}{2 \times 1}+\frac{4}{3\times 2\times 1} + ...+ (-1)^{k+1} \frac{k+1}{k\times (k - 1)\times ... \times 2\times 1} \ge 1 + \frac{1}{700^3}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1999 Switzerland Team Selection Test, 7
A square is dissected into rectangles with sides parallel to the sides of the square. For each of these rectangles, the ratio of its shorter side to its longer side is considered. Show that the sum of all these ratios is at least $1$.
Fractal Edition 1, P2
A deck consists of 13 types of cards: \( A > K > Q > J > 10 > 9 > \dots > 3 > 2 \), each card appearing 4 times. In total, there are 52 cards.
Marius and Alexandru each receive half of the standard deck of cards, placing them face down. On each turn, the players simultaneously draw the top card from their hands, and the player with the most valuable card takes both cards and places them under all of his other cards, with Marius deciding the order in which the two cards are placed. In case of a tie, each player places their own card under the rest of their cards. The game ends when one of the players runs out of cards.
Is it possible that, although Alexandru initially has all four \( A \) cards, the game lasts forever?
1990 Tournament Of Towns, (269) 3
An $8$ by $8$ board (with $64$ $1$ by $1$ squares) is painted white. We are allowed to choose any rectangle consisting of $3$ of the $64$ squares and paint each of the $3$ squares in the opposite colour (the white ones black, the black ones white). Is it possible to paint the entire board black by means of such operations?
(IS Rubanov, Kirov)