This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2023 Czech and Slovak Olympiad III A., 1

Alice and Bob are playing a game on a plane consisting of $72$ cells arranged in circle. At the beginning of the game, Bob places a stone on some of the cells. Then, in every round first Alice picks one empty cell and then Bob must move a stone from one of the two neighboring cells on this cell. If he is unable to do that, game ends. Determine the smallest number of stones he has to place in the beginning so he has a strategy to make the game last for at least $2023$ rounds.

2002 Federal Competition For Advanced Students, Part 2, 2

In the net drawn below, in how many ways can one reach the point $3n+1$ starting from the point $1$ so that the labels of the points on the way increase? [asy] import graph; size(12cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-4.3,xmax=12.32,ymin=-10.66,ymax=6.3; draw((1,2)--(xmax,0*xmax+2)); draw((1,0)--(xmax,0*xmax+0)); draw((0,1)--(1,2)); draw((1,0)--(0,1)); draw((1,2)--(3,0)); draw((1,0)--(3,2)); draw((3,2)--(5,0)); draw((3,0)--(5,2)); draw((5,2)--(7,0)); draw((5,0)--(7,2)); draw((7,2)--(9,0)); draw((7,0)--(9,2)); dot((1,0),linewidth(1pt)+ds); label("2",(0.96,-0.5),NE*lsf); dot((0,1),linewidth(1pt)+ds); label("1",(-0.42,0.9),NE*lsf); dot((1,2),linewidth(1pt)+ds); label("3",(0.98,2.2),NE*lsf); dot((2,1),linewidth(1pt)+ds); label("4",(1.92,1.32),NE*lsf); dot((3,2),linewidth(1pt)+ds); label("6",(2.94,2.2),NE*lsf); dot((4,1),linewidth(1pt)+ds); label("7",(3.94,1.32),NE*lsf); dot((6,1),linewidth(1pt)+ds); label("10",(5.84,1.32),NE*lsf); dot((3,0),linewidth(1pt)+ds); label("5",(2.98,-0.46),NE*lsf); dot((5,2),linewidth(1pt)+ds); label("9",(4.92,2.24),NE*lsf); dot((5,0),linewidth(1pt)+ds); label("8",(4.94,-0.42),NE*lsf); dot((8,1),linewidth(1pt)+ds); label("13",(7.88,1.34),NE*lsf); dot((7,2),linewidth(1pt)+ds); label("12",(6.8,2.26),NE*lsf); dot((7,0),linewidth(1pt)+ds); label("11",(6.88,-0.38),NE*lsf); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); [/asy]

1999 Akdeniz University MO, 4

Placing $n \in {\mathbb N}$ circles with radius $1$ $unit$ inside a square with side $100$ $unit$ such that, whichever line segment with lenght $10$ $unit$ intersect at least one circle. Prove that $$n \geq 416$$

2018 JBMO TST-Turkey, 4

$n\geq3$ boxes are placed around a circle. At the first step we choose some boxes. At the second step for each chosen box we put a ball into the chosen box and into each of its two neighbouring boxes. Find the total number of possible distinct ball distributions which can be obtained in this way. (All balls are identical.)

2011 Indonesia TST, 2

A graph $G$ with $n$ vertex is called [i]good [/i] if every vertex could be labelled with distinct positive integers which are less than or equal $\lfloor \frac{n^2}{4} \rfloor$ such that there exists a set of nonnegative integers $D$ with the following property: there exists an edge between $2$ vertices if and only if the difference of their labels is in $D$. Show that there exists a positive integer $N$ such that for every $n \ge N$, there exist a not-good graph with $n$ vertices.

2006 Bulgaria Team Selection Test, 3

[b]Problem 3.[/b] Let $n\geq 3$ is given natural number, and $M$ is the set of the first $n$ primes. For any nonempty subset $X$ of $M$ with $P(X)$ denote the product of its elements. Let $N$ be a set of the kind $\ds\frac{P(A)}{P(B)}$, $A\subset M, B\subset M, A\cap B=\emptyset$ such that the product of any 7 elements of $N$ is integer. What is the maximal number of elements of $N$? [i]Alexandar Ivanov[/i]

2020 HMNT (HMMO), 6

The elevator buttons in Harvard's Science Center form a $3\times 2$ grid of identical buttons, and each button lights up when pressed. One day, a student is in the elevator when all the other lights in the elevator malfunction, so that only the buttons which are lit can be seen, but one cannot see which floors they correspond to. Given that at least one of the buttons is lit, how many distinct arrangements can the student observe? (For example, if only one button is lit, then the student will observe the same arrangement regardless of which button it is.)

2003 China Team Selection Test, 2

Suppose $A=\{1,2,\dots,2002\}$ and $M=\{1001,2003,3005\}$. $B$ is an non-empty subset of $A$. $B$ is called a $M$-free set if the sum of any two numbers in $B$ does not belong to $M$. If $A=A_1\cup A_2$, $A_1\cap A_2=\emptyset$ and $A_1,A_2$ are $M$-free sets, we call the ordered pair $(A_1,A_2)$ a $M$-partition of $A$. Find the number of $M$-partitions of $A$.

2021 Iranian Combinatorics Olympiad, P6

Let $\mathcal{P}$ be a convex polygon and $\textbf{T}$ be a triangle with vertices among the vertices of $\mathcal{P}$. By removing $\textbf{T}$ from $\mathcal{P}$, we end up with $0, 1, 2,$ or $3$ smaller polygons (possibly with shared vertices) which we call the effect of $\textbf{T}$. A triangulation of $P$ is a way of dissecting it into some triangles using some non-intersecting diagonals. We call a triangulation of $\mathcal{P}$ $\underline{\text{beautiful}}$, if for each of its triangles, the effect of this triangle contains exactly one polygon with an odd number of vertices. Prove that a triangulation of $\mathcal{P}$ is beautiful if and only if we can remove some of its diagonals and end up with all regions as quadrilaterals.

2008 Saint Petersburg Mathematical Olympiad, 6

A diagonal of a 100-gon is called good if it divides the 100-gon into two polygons each with an odd number of sides. A 100-gon was split into triangles with non-intersecting diagonals, exactly 49 of which are good. The triangles are colored into two colors such that no two triangles that border each other are colored with the same color. Prove that there is the same number of triangles colored with one color as with the other. Fresh translation; slightly reworded.

2014 BMT Spring, 18

Monty wants to play a game with you. He shows you five boxes, one of which contains a prize and four of which contain nothing. He allows you to choose one box but not to open it. He then opens one of the other four boxes that he knows to contain nothing. Then, he makes you switch and choose a different, unopened box. However, Monty sketchily reveals the contents of another (empty) box, selected uniformly at random from the two or three closed boxes (that you do not currently have chosen) that he knows to contain no prize. He then offers you the chance to switch again. Assuming you seek to maximize your return, determine the probability you get a prize.

2014 Turkey MO (2nd round), 1

In a bag there are $1007$ black and $1007$ white balls, which are randomly numbered $1$ to $2014$. In every step we draw one ball and put it on the table; also if we want to, we may choose two different colored balls from the table and put them in a different bag. If we do that we earn points equal to the absolute value of their differences. How many points can we guarantee to earn after $2014$ steps?

2009 QEDMO 6th, 2

Let there be a finite number of straight lines in the plane, none of which are three in one point to cut. Show that the intersections of these straight lines can be colored with $3$ colors so that that no two points of the same color are adjacent on any of the straight lines. (Two points of intersection are called [i]adjacent [/i] if they both lie on one of the finitely many straight lines and there is no other such intersection on their connecting line.)

2024 Middle European Mathematical Olympiad, 4

A finite sequence $x_1,\dots,x_r$ of positive integers is a [i]palindrome[/i] if $x_i=x_{r+1-i}$ for all integers $1 \le i \le r$. Let $a_1,a_2,\dots$ be an infinite sequence of positive integers. For a positive integer $j \ge 2$, denote by $a[j]$ the finite subsequence $a_1,a_2,\dots,a_{j-1}$. Suppose that there exists a strictly increasing infinite sequence $b_1,b_2,\dots$ of positive integers such that for every positive integer $n$, the subsequence $a[b_n]$ is a palindrome and $b_{n+2} \le b_{n+1}+b_n$. Prove that there exists a positive integer $T$ such that $a_i=a_{i+T}$ for every positive integer $i$.

2019 Korea Junior Math Olympiad., 1

Each integer coordinates are colored with one color and at least 5 colors are used to color every integer coordinates. Two integer coordinates $(x, y)$ and $(z, w)$ are colored in the same color if $x-z$ and $y-w$ are both multiples of 3. Prove that there exists a line that passes through exactly three points when five points with different colors are chosen randomly.

1991 China Team Selection Test, 3

All edges of a polyhedron are painted with red or yellow. For an angle of a facet, if the edges determining it are of different colors, then the angle is called [i]excentric[/i]. The[i] excentricity [/i]of a vertex $A$, namely $S_A$, is defined as the number of excentric angles it has. Prove that there exist two vertices $B$ and $C$ such that $S_B + S_C \leq 4$.

2008 China Team Selection Test, 3

Let $ S$ be a set that contains $ n$ elements. Let $ A_{1},A_{2},\cdots,A_{k}$ be $ k$ distinct subsets of $ S$, where $ k\geq 2, |A_{i}| \equal{} a_{i}\geq 1 ( 1\leq i\leq k)$. Prove that the number of subsets of $ S$ that don't contain any $ A_{i} (1\leq i\leq k)$ is greater than or equal to $ 2^n\prod_{i \equal{} 1}^k(1 \minus{} \frac {1}{2^{a_{i}}}).$

2017 Hong Kong TST, 2

In a committee there are $n$ members. Each pair of members are either friends or enemies. Each committee member has exactly three enemies. It is also known that for each committee member, an enemy of his friend is automatically his own enemy. Find all possible value(s) of $n$

1988 IMO Longlists, 19

Let $Z_{m,n}$ be the set of all ordered pairs $(i,j)$ with $i \in {1, \ldots, m}$ and $j \in {1, \ldots, n}.$ Also let $a_{m,n}$ be the number of all those subsets of $Z_{m,n}$ that contain no 2 ordered pairs $(i_1,j_1)$ and $(i_2,j_2)$ with $|i_1 - i_2| + |j_1 - j_2| = 1.$ Then show, for all positive integers $m$ and $k,$ that \[ a^2_{m, 2 \cdot k} \leq a_{m, 2 \cdot k - 1} \cdot a_{m, 2 \cdot k + 1}. \]

2025 Taiwan Mathematics Olympiad, 4

Find all positive integers $n$ satisfying the following: there exists a way to fill in $1, \cdots, n^2$ into a $n \times n$ grid so that each block has exactly one number, each number appears exactly once, and: 1. For all positive integers $1 \leq i < n^2$, $i$ and $i + 1$ are neighbors (two numbers neighbor each other if and only if their blocks share a common edge.) 2. Any two numbers among $1^2, \cdots, n^2$ are not in the same row or the same column.

2023 Girls in Mathematics Tournament, 3

Let $S$ be a set not empty of positive integers and $AB$ a segment with, initially, only points $A$ and $B$ colored by red. An operation consists of choosing two distinct points $X, Y$ colored already by red and $n\in S$ an integer, and painting in red the $n$ points $A_1, A_2,..., A_n$ of segment $XY$ such that $XA_1= A_1A_2= A_2A_3=...= A_{n-1}A_n= A_nY$ and $XA_1<XA_2<...<XA_n$. Find the least positive integer $m$ such exists a subset $S$ of $\{1,2,.., m\}$ such that, after a finite number of operations, we can paint in red the point $K$ in the segment $AB$ defined by $\frac{AK}{KB}= \frac{2709}{2022}$. Also, find the number of such subsets for such a value of $m$.

2010 Portugal MO, 3

On each day, more than half of the inhabitants of Évora eats [i]sericaia[/i] as dessert. Show that there is a group of 10 inhabitants of Évora such that, on each of the last 2010 days, at least one of the inhabitants ate [i]sericaia[/i] as dessert.

2012 JBMO TST - Turkey, 2

Let $S=\{1,2,3,\ldots,2012\}.$ We want to partition $S$ into two disjoint sets such that both sets do not contain two different numbers whose sum is a power of $2.$ Find the number of such partitions.

1979 IMO Shortlist, 2

From a bag containing 5 pairs of socks, each pair a different color, a random sample of 4 single socks is drawn. Any complete pairs in the sample are discarded and replaced by a new pair draw from the bag. The process continues until the bag is empty or there are 4 socks of different colors held outside the bag. What is the probability of the latter alternative?

1992 Canada National Olympiad, 5

A deck of $ 2n\plus{}1$ cards consists of a joker and, for each number between 1 and $ n$ inclusive, two cards marked with that number. The $ 2n\plus{}1$ cards are placed in a row, with the joker in the middle. For each $ k$ with $ 1 \leq k \leq n,$ the two cards numbered $ k$ have exactly $ k\minus{}1$ cards between them. Determine all the values of $ n$ not exceeding 10 for which this arrangement is possible. For which values of $ n$ is it impossible?