This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2013 Tournament of Towns, 1

There are six points on the plane such that one can split them into two triples each creating a triangle. Is it always possible to split these points into two triples creating two triangles with no common point (neither inside, nor on the boundary)?

1994 Austrian-Polish Competition, 4

The vertices of a regular $n + 1$-gon are denoted by $P_0,P_1,...,P_n$ in some order ($n \ge 2$). Each side of the polygon is assigned a natural number as follows: if the endpoints of the side are $P_i$ and $P_j$, then the assigned number equals $|i - j |$. Let S be the sum of all $n + 1$ assigned numbers. (a) Given $n$, what is the smallest possible value of $S$? (b) If $P_0$ is fixed, how many different assignments are there for which $S$ attains the smallest value?

2016 Bulgaria JBMO TST, 4

Given is equilateral triangle $ABC$ with side length $n \geq 3$. It is divided into $n^2$ identical small equilateral triangles with side length $1$. On every vertex of the triangles there is a number. In a move we can choose a rhombus and add or subtract $1$ from all $4$ numbers on the vertices of the rhombus. Let point $D$ have coordinates $(3,2)$ where $3$ is the number of the row and $2$ is the position on it from left to right. On the vertices $A,B,C,D$ there are $1$'s and on the other vertices there are $0$'s. Is it possible, after some operations, all the numbers to become equal?

2021 Taiwan APMO Preliminary First Round, 7

Let $n$ be a fixed positive integer. We have a $n\times n$ chessboard. We call a pair of cells [b]good[/b] if they share a common vertex (May be common edge or common vertex). How many [b]good[/b] pairs are there on this chessboard?

2022 Kurschak Competition, 1

A square has been divided into $2022$ rectangles with no two of them having a common interior point. What is the maximal number of distinct lines that can be determined by the sides of these rectangles?

2015 Bulgaria National Olympiad, 6

In a mathematical olympiad students received marks for any of the four areas: algebra, geometry, number theory and combinatorics. Any two of the students have distinct marks for all four areas. A group of students is called [i]nice [/i] if all students in the group can be ordered in increasing order simultaneously of at least two of the four areas. Find the least positive integer N, such that among any N students there exist a [i]nice [/i] group of ten students.

2023 IFYM, Sozopol, 8

Let $D$ be an infinite (in one direction) sequence of zeros and ones. For each $n\in\mathbb{N}$, let $a_n$ denote the number of distinct subsequences of consecutive symbols in $D$ of length $n$. Does there exist a sequence $D$ for which the inequality \[ \left|\frac{a_n}{n\log_2 n} - 1\right| < \frac{1}{100} \] is satisfied for every natural number $n > 10^{10000}$?

2018 Slovenia Team Selection Test, 2

Ana and Bojan are playing a game: Ana chooses positive integers $a$ and $b$ and each one gets $2016$ pieces of paper, visible to both - Ana gets the pieces with the numbers $a+1$, $a+2$, $\ldots$, $a+2016$ and Bojan gets the pieces with the numbers $b+1$, $b+2$, $\ldots$, $b+2016$ on them. Afterwards, one of them writes the number $a+b$ on the board. In every move, Ana chooses one of her pieces of paper and hands it to Bojan who chooses one of his own, writes their sum on the board and removes them both from the game. When they run out of pieces, they multiply the numbers on the board together. If the result has the same remainder than $a+b$ when divided by $2017$, Bojan wins, otherwise, Ana wins. Who has the winning strategy?

2010 Baltic Way, 10

Let $n$ be an integer with $n\ge 3$. Consider all dissections of a convex $n$-gon into triangles by $n-3$ non-intersecting diagonals, and all colourings of the triangles with black and white so that triangles with a common side are always of a different colour. Find the least possible number of black triangles.

2009 Miklós Schweitzer, 3

Prove that there exist positive constants $ c$ and $ n_0$ with the following property. If $ A$ is a finite set of integers, $ |A| \equal{} n > n_0$, then \[ |A \minus{} A| \minus{} |A \plus{} A| \leq n^2 \minus{} c n^{8/5}.\]

2011 Argentina National Olympiad, 2

Three players $A,B$ and $C$ take turns removing stones from a pile of $N$ stones. They move in the order $A,B,C,A,B,C,…A$. The game begins, and the one who takes out the last stone loses the game. The players $A$ and $C$ team up against $B$ , they agree on a joint strategy. $B$ can take in each play $1,2,3,4$ or $5$ stones, while $A$ and $C$, they can each get $1,2$ or $3$ stones each turn. Determine for what values ​​of $N$ have winning strategy $A$ and $C$, and for what values ​​the winning strategy is from $B$. .

2019 JBMO Shortlist, C4

We have a group of $n$ kids. For each pair of kids, at least one has sent a message to the other one. For each kid $A$, among the kids to whom $A$ has sent a message, exactly $25 \% $ have sent a message to $A$. How many possible two-digit values of $n$ are there? [i]Proposed by Bulgaria[/i]

2021 All-Russian Olympiad, 3

Some language has only three letters - $A, B$ and $C$. A sequence of letters is called a word iff it contains exactly 100 letters such that exactly 40 of them are consonants and other 60 letters are all $A$. What is the maximum numbers of words one can pick such that any two picked words have at least one position where they both have consonants, but different consonants?

2001 German National Olympiad, 3

Wiebke and Stefan play the following game on a rectangular sheet of paper. They start with a rectangle with $60$ rows and $40$ columns and cut it in turns into smaller rectangles. The cuttings must be made along the gridlines, and a player in turn may cut only one smaller rectangle. By that, Stefan makes only vertical cuts, while Wiebke makes only horizontal cuts. A player who cannot make a regular move loses the game. (a) Who has a winning strategy if Stefan makes the first move? (b) Who has a winning strategy if Wiebke makes the first move?

2022 Canada National Olympiad, 3

Vishal starts with $n$ copies of the number $1$ written on the board. Every minute, he takes two numbers $a, b$ and replaces them with either $a+b$ or $\min(a^2, b^2)$. After $n-1$ there is $1$ number on the board. Let the maximal possible value of this number be $f(n)$. Prove $2^{n/3}<f(n)\leq 3^{n/3}$.

1982 Putnam, B3

Let $p_n$ be the probability that $c+d$ is a perfect square when the integers $c$ and $d$ are selected independently at random from the set $\{1,2,\ldots,n\}$. Show that $\lim_{n\to\infty}p_n\sqrt n$ exists and express this limit in the form $r(\sqrt s-t)$, where $s$ and $t$ are integers and $r$ is a rational number.

2014 Postal Coaching, 5

Let $A=\{1,2,3,\ldots,40\}$. Find the least positive integer $k$ for which it is possible to partition $A$ into $k$ disjoint subsets with the property that if $a,b,c$ (not necessarily distinct) are in the same subset, then $a\ne b+c$.

2002 Iran Team Selection Test, 2

$n$ people (with names $1,2,\dots,n$) are around a table. Some of them are friends. At each step 2 friend can change their place. Find a necessary and sufficient condition for friendship relation between them that with these steps we can always reach to all of posiible permutations.

1996 Bundeswettbewerb Mathematik, 2

Tags: combinatorics , sum , board
The cells of an $n \times n$ board are labelled with the numbers $1$ through $n^2$ in the usual way. Let $n$ of these cells be selected, no two of which are in the same row or column. Find all possible values of the sum of their labels.

2018 Hanoi Open Mathematics Competitions, 10

There are $100$ school students from two clubs $A$ and $B$ standing in circle. Among them $62$ students stand next to at least one student from club $A$, and $54$ students stand next to at least one student from club $B$. 1) How many students stand side-by-side with one friend from club $A$ and one friend from club $B$? 2) What is the number of students from club $A$?

2018 China Team Selection Test, 6

Let $A_1$, $A_2$, $\cdots$, $A_m$ be $m$ subsets of a set of size $n$. Prove that $$ \sum_{i=1}^{m} \sum_{j=1}^{m}|A_i|\cdot |A_i \cap A_j|\geq \frac{1}{mn}\left(\sum_{i=1}^{m}|A_i|\right)^3.$$

2012 Bosnia Herzegovina Team Selection Test, 6

A unit square is divided into polygons, so that all sides of a polygon are parallel to sides of the given square. If the total length of the segments inside the square (without the square) is $2n$ (where $n$ is a positive real number), prove that there exists a polygon whose area is greater than $\frac{1}{(n+1)^2}$.

1977 IMO Shortlist, 6

Let $n$ be a positive integer. How many integer solutions $(i, j, k, l) , \ 1 \leq i, j, k, l \leq n$, does the following system of inequalities have: \[1 \leq -j + k + l \leq n\]\[1 \leq i - k + l \leq n\]\[1 \leq i - j + l \leq n\]\[1 \leq i + j - k \leq n \ ?\]

2025 Malaysian IMO Training Camp, 3

Minivan and Megavan play a game. For a positive integer $n$, Minivan selects a sequence of integers $a_1,a_2,\ldots,a_n$. An operation on $a_1,a_2,\ldots,a_n$ means selecting an $a_i$ and increasing it by $1$. Minivan and Megavan take turns, with Minivan going first. On Minivan's turn, he performs at most $2025$ operations, and he may choose the same integer repeatedly. On Megavan's turn, he performs exactly $1$ operation instead. Megavan wins if at any point in the game, including in the middle of Minivan's operations, two numbers in the sequence are equal. [i](Proposed by Ho Janson)[/i]

2018 Romanian Master of Mathematics Shortlist, C1

Call a point in the Cartesian plane with integer coordinates a $lattice$ $point$. Given a finite set $\mathcal{S}$ of lattice points we repeatedly perform the following operation: given two distinct lattice points $A, B$ in $\mathcal{S}$ and two distinct lattice points $C, D$ not in $\mathcal{S}$ such that $ACBD$ is a parallelogram with $AB > CD$, we replace $A, B$ by $C, D$. Show that only finitely many such operations can be performed. [I]Proposed by Joe Benton, United Kingdom.[/i]