Found problems: 14842
2022 China Team Selection Test, 6
Let $m,n$ be two positive integers with $m \ge n \ge 2022$. Let $a_1,a_2,\ldots,a_n,b_1,b_2,\ldots,b_n$ be $2n$ real numbers. Prove that the numbers of ordered pairs $(i,j) ~(1 \le i,j \le n)$ such that
\[ |a_i+b_j-ij| \le m \]
does not exceed $3n\sqrt{m \log n}$.
LMT Team Rounds 2010-20, 2018 Fall
[b]p1.[/b] Evaluate $1+3+5+··· +2019$.
[b]p2.[/b] Evaluate $1^2 -2^2 +3^2 -4^2 +...· +99^2 -100^2$.
[b]p3. [/b]Find the sum of all solutions to $|2018+|x -2018|| = 2018$.
[b]p4.[/b] The angles in a triangle form a geometric series with common ratio $\frac12$ . Find the smallest angle in the triangle.
[b]p5.[/b] Compute the number of ordered pairs $(a,b,c,d)$ of positive integers $1 \le a,b,c,d \le 6$ such that $ab +cd$ is a multiple of seven.
[b]p6.[/b] How many ways are there to arrange three birch trees, four maple, and five oak trees in a row if trees of the same species are considered indistinguishable.
[b]p7.[/b] How many ways are there for Mr. Paul to climb a flight of 9 stairs, taking steps of either two or three at a time?
[b]p8.[/b] Find the largest natural number $x$ for which $x^x$ divides $17!$
[b]p9.[/b] How many positive integers less than or equal to $2018$ have an odd number of factors?
[b]p10.[/b] Square $MAIL$ and equilateral triangle $LIT$ share side $IL$ and point $T$ is on the interior of the square. What is the measure of angle $LMT$?
[b]p11.[/b] The product of all divisors of $2018^3$ can be written in the form $2^a \cdot 2018^b$ for positive integers $a$ and $b$. Find $a +b$.
[b]p12.[/b] Find the sum all four digit palindromes. (A number is said to be palindromic if its digits read the same forwards and backwards.
[b]p13.[/b] How ways are there for an ant to travel from point $(0,0)$ to $(5,5)$ in the coordinate plane if it may only move one unit in the positive x or y directions each step, and may not pass through the point $(1, 1)$ or $(4, 4)$?
[b]p14.[/b] A certain square has area $6$. A triangle is constructed such that each vertex is a point on the perimeter of the square. What is the maximum possible area of the triangle?
[b]p15.[/b] Find the value of ab if positive integers $a,b$ satisfy $9a^2 -12ab +2b^2 +36b = 162$.
[b]p16.[/b] $\vartriangle ABC$ is an equilateral triangle with side length $3$. Point $D$ lies on the segment $BC$ such that $BD = 1$ and $E$ lies on $AC$ such that $AE = AD$. Compute the area of $\vartriangle ADE$.
[b]p17[/b]. Let $A_1, A_2,..., A_{10}$ be $10$ points evenly spaced out on a line, in that order. Points $B_1$ and $B_2$ lie on opposite sides of the perpendicular bisector of $A_1A_{10}$ and are equidistant to $l$. Lines $B_1A_1,...,B_1A_{10}$ and $B_2A_1,...· ,B_2A_{10}$ are drawn. How many triangles of any size are present?
[b]p18.[/b] Let $T_n = 1+2+3··· +n$ be the $n$th triangular number. Determine the value of the infinite sum $\sum_{k\ge 1} \frac{T_k}{2^k}$.
[b]p19.[/b] An infinitely large bag of coins is such that for every $0.5 < p \le 1$, there is exactly one coin in the bag with probability $p$ of landing on heads and probability $1- p$ of landing on tails. There are no other coins besides these in the bag. A coin is pulled out of the bag at random and when flipped lands on heads. Find the probability that the coin lands on heads when flipped again.
[b]p20.[/b] The sequence $\{x_n\}_{n\ge 1}$ satisfies $x1 = 1$ and $(4+ x_1 + x_2 +··· + x_n)(x_1 + x_2 +··· + x_{n+1}) = 1$ for all $n \ge 1$. Compute $\left \lfloor \frac{x_{2018}}{x_{2019}} \right \rfloor$.
PS. You had better use hide for answers.
2023 Mid-Michigan MO, 10-12
[b]p1.[/b] There are $16$ students in a class. Each month the teacher divides the class into two groups. What is the minimum number of months that must pass for any two students to be in different groups in at least one of the months?
[b]p2.[/b] Find all functions $f(x)$ defined for all real $x$ that satisfy the equation $2f(x) + f(1 - x) = x^2$.
[b]p3.[/b] Arrange the digits from $1$ to $9$ in a row (each digit only once) so that every two consecutive digits form a two-digit number that is divisible by $7$ or $13$.
[b]p4.[/b] Prove that $\cos 1^o$ is irrational.
[b]p5.[/b] Consider $2n$ distinct positive Integers $a_1,a_2,...,a_{2n}$ not exceeding $n^2$ ($n>2$). Prove that some three of the differences $a_i- a_j$ are equal .
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Tuymaada Olympiad, 3
$n$ rooks and $k$ pawns are arranged on a $100 \times 100$ board. The rooks cannot leap over pawns. For which minimum $k$ is it possible that no rook can capture any other rook?
Junior League: $n=2551$ ([i]Proposed by A. Kuznetsov[/i])
Senior League: $n=2550$ ([i]Proposed by N. Vlasova[/i])
2012 Greece JBMO TST, 4
Numbers $x,y,z$ are positive integers and satisfy the equation $x+y+z=2013$. (E)
a) Find the number of the triplets $(x,y,z)$ that are solutions of the equation (E).
b) Find the number of the solutions of the equation (E) for which $x=y$.
c) Find the solution $(x,y,z)$ of the equation (E) for which the product $xyz$ becomes maximum.
2004 Federal Math Competition of S&M, 3
Let $A = \{1,2,3, . . . ,11\}$. How many subsets $B$ of $A$ are there, such that for each $n\in \{1,2, . . . ,8\}$, if $n$ and $n+2$ are in $B$ then at least one of the numbers $ n+1$ and $n+3$ is also in $B$?
2013 Costa Rica - Final Round, 4
Antonio and Beltran have impeccable logical reasoning, they put on a hat with a integer between $0$ and $19$ (including both) so that each of them sees the number that has the other (but cannot see his own number), and they must try to guess the number that have on their hat.
They have a timer that a bell rings every minute and the moment it rings.
This is when they must say if they know the number on their hat.
A third person tells them: ''the sum of the numbers is $6$ or $11$ or $19$''. At that moment it begins to run time.
After a minute the bell rings and neither of them says anything. The second minute passes , the doorbell rings and neither of us says anything. Time continues to pass and when the bell rings for the tenth time Antonio says that he already knows what is his number.
Just determine the number each has in his hat.
1973 Chisinau City MO, 66
If $A$ and $B$ are points of the plane, then by $A * B$ we denote a point symmetric to $A$ with respect to $B$. Is it possible, by applying the operation $*$ several times, to obtain from the three vertices of a given square its fourth vertex?
2002 All-Russian Olympiad, 4
On a plane are given finitely many red and blue lines, no two parallel, such that any intersection point of two lines of the same color also lies on another line of the other color. Prove that all the lines pass through a single point.
2009 Romania Team Selection Test, 1
We call Golomb ruler a ruler of length $l$, bearing $k+1\geq 2$ marks $0<a_1<\ldots <a_{k-1}<l$, such that the lengths that can be measured using marks on the ruler are consecutive integers starting with $1$, and each such length be measurable between just two of the gradations of the ruler. Find all Golomb rulers.
2014 Math Hour Olympiad, 5-7
[u]Round 1[/u]
[b]p1.[/b] Three snails – Alice, Bobby, and Cindy – were racing down a road.
Whenever one snail passed another, it waved at the snail it passed.
During the race, Alice waved $3$ times and was waved at twice.
Bobby waved $4$ times and was waved at $3$ times.
Cindy waved $5$ times. How many times was she waved at?
[b]p2.[/b] Sherlock and Mycroft are playing Battleship on a $4\times 4$ grid. Mycroft hides a single $3\times 1$ cruiser somewhere on the board. Sherlock can pick squares on the grid and fire upon them. What is the smallest number of shots Sherlock has to fire to guarantee at least one hit on the cruiser?
[b]p3.[/b] Thirty girls – $13$ of them in red dresses and $17$ in blue dresses – were dancing in a circle, hand-in-hand. Afterwards, each girl was asked if the girl to her right was in a blue dress. Only the girls who had both neighbors in red dresses or both in blue dresses told the truth. How many girls could have answered “Yes”?
[b]p4.[/b] Herman and Alex play a game on a $5\times 5$ board. On his turn, a player can claim any open square as his territory. Once all the squares are claimed, the winner is the player whose territory has the longer border. Herman goes first. If both play their best, who will win, or will the game end in a draw?
[img]https://cdn.artofproblemsolving.com/attachments/5/7/113d54f2217a39bac622899d3d3eb51ec34f1f.png[/img]
[b]p5.[/b] Is it possible to find $2014$ distinct positive integers whose sum is divisible by each of them?
[u]Round 2[/u]
[b]p6.[/b] Hermione and Ron play a game that starts with 129 hats arranged in a circle. They take turns magically transforming the hats into animals. On each turn, a player picks a hat and chooses whether to change it into a badger or into a raven. A player loses if after his or her turn there are two animals of the same species right next to each other. Hermione goes first. Who loses?
[b]p7.[/b] Three warring states control the corner provinces of the island whose map is shown below.
[img]https://cdn.artofproblemsolving.com/attachments/e/a/4e2f436be1dcd3f899aa34145356f8c66cda82.png[/img]
As a result of war, each of the remaining $18$ provinces was occupied by one of the states. None of the states was able to occupy any province on the coast opposite their corner. The states would like to sign a peace treaty. To do this, they each must send ambassadors to a place where three provinces, one controlled by each state, come together. Prove that they can always find such a place to meet.
For example, if the provinces are occupied as shown here, the squares mark possible meeting spots.
[img]https://cdn.artofproblemsolving.com/attachments/e/b/81de9187951822120fc26024c1c1fbe2138737.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2008 China National Olympiad, 2
Find the smallest integer $n$ satisfying the following condition: regardless of how one colour the vertices of a regular $n$-gon with either red, yellow or blue, one can always find an isosceles trapezoid whose vertices are of the same colour.
1950 Kurschak Competition, 1
Several people visited a library yesterday. Each one visited the library just once (in the course of yesterday). Amongst any three of them, there were two who met in the library. Prove that there were two moments $T$ and $T$' yesterday such that everyone who visited the library yesterday was in the library at $T$ or $T'$ (or both).
2008 Bosnia Herzegovina Team Selection Test, 3
$ 30$ persons are sitting at round table. $ 30 \minus{} N$ of them always speak true ("true speakers") while the other $ N$ of them sometimes speak true sometimes not ("lie speakers"). Question: "Who is your right neighbour - "true speaker" or "lie speaker" ?" is asked to all 30 persons and 30 answers are collected. What is maximal number $ N$ for which (with knowledge of these answers) we can always be sure (decide) about at least one person who is "true speaker".
1997 Romania Team Selection Test, 4
Let $p,q,r$ be distinct prime numbers and let
\[A=\{p^aq^br^c\mid 0\le a,b,c\le 5\} \]
Find the least $n\in\mathbb{N}$ such that for any $B\subset A$ where $|B|=n$, has elements $x$ and $y$ such that $x$ divides $y$.
[i]Ioan Tomescu[/i]
STEMS 2024 Math Cat B, P6
All the rationals are coloured with $n$ colours so that, if rationals $a$ and $b$ are colored with different colours then $\frac{a+b}2$ is coloured with a colour different from both $a$ and $b$. Prove that every rational is coloured with the same colour.
2002 Vietnam Team Selection Test, 2
On a blackboard a positive integer $n_0$ is written. Two players, $A$ and $B$ are playing a game, which respects the following rules:
$-$ acting alternatively per turn, each player deletes the number written on the blackboard $n_k$ and writes instead one number denoted with $n_{k+1}$ from the set $\left\{n_k-1, \dsp \left\lfloor\frac {n_k}3\right\rfloor\right\}$;
$-$ player $A$ starts first deleting $n_0$ and replacing it with $n_1\in\left\{n_0-1, \dsp \left\lfloor\frac {n_0}3\right\rfloor\right\}$;
$-$ the game ends when the number on the table is 0 - and the player who wrote it is the winner.
Find which player has a winning strategy in each of the following cases:
a) $n_0=120$;
b) $n_0=\dsp \frac {3^{2002}-1}2$;
c) $n_0=\dsp \frac{3^{2002}+1}2$.
2024 Harvard-MIT Mathematics Tournament, 1
Compute the number of ways to divide a $20 \times 24 $ rectangle into $4 \times 5$ rectangles. (Rotations and reflections are considered distinct.)
2012 All-Russian Olympiad, 3
A plane is coloured into black and white squares in a chessboard pattern. Then, all the white squares are coloured red and blue such that any two initially white squares that share a corner are different colours. (One is red and the other is blue.) Let $\ell$ be a line not parallel to the sides of any squares. For every line segment $I$ that is parallel to $\ell$, we can count the difference between the length of its red and its blue areas. Prove that for every such line $\ell$ there exists a number $C$ that exceeds all those differences that we can calculate.
2020-IMOC, C1
Find all positive integer $N$ such that for any infinite triangular grid with exactly $N$ black unit equilateral triangles, there exists an equilateral triangle $S$ whose sides align with grid lines such that there is exactly one black unit equilateral triangle outside of $S.$
(ltf0501)
2018 Romanian Masters in Mathematics, 3
Ann and Bob play a game on the edges of an infinite square grid, playing in turns. Ann plays the first move. A move consists of orienting any edge that has not yet been given an orientation. Bob wins if at any point a cycle has been created. Does Bob have a winning strategy?
2014 Spain Mathematical Olympiad, 3
$60$ points are on the interior of a unit circle (a circle with radius $1$). Show that there exists a point $V$ on the circumference of the circle such that the sum of the distances from $V$ to the $60$ points is less than or equal to $80$.
2022 Iranian Geometry Olympiad, 4
We call two simple polygons $P, Q$ $\textit{compatible}$ if there exists a positive integer $k$ such that each of $P, Q$ can be partitioned into $k$ congruent polygons similar to the other one. Prove that for every two even integers $m, n \geq 4$, there are two compatible polygons with $m$ and $n$ sides. (A simple polygon is a polygon that does not intersect itself.)
[i]Proposed by Hesam Rajabzadeh[/i]
1999 Hungary-Israel Binational, 3
In a multiple-choice test, there are 4 problems, each having 3 possible answers.
In some group of examinees, it turned out that for every 3 of them, there was a question that each of them gave a different answer to. What is the maximal number of examinees in this group?
Math Hour Olympiad, Grades 8-10, 2023
[u]Round 1[/u]
[b]p1.[/b] Alex is on a week-long mining quest. Each morning, she mines at least $1$ and at most $10$ diamonds and adds them to her treasure chest (which already contains some diamonds). Every night she counts the total number of diamonds in her collection and finds that it is divisible by either $22$ or $25$. Show that she miscounted.
[b]p2.[/b] Hermione set out a row of $11$ Bertie Bott’s Every Flavor Beans for Ron to try. There are $5$ chocolateflavored beans that Ron likes and $6$ beans flavored like earwax, which he finds disgusting. All beans look the same, and Hermione tells Ron that a chocolate bean always has another chocolate bean next to it. What is the smallest number of beans that Ron must taste to guarantee he finds a chocolate one?
[b]p3.[/b] There are $101$ pirates on a pirate ship: the captain and $100$ crew. Each pirate, including the captain, starts with $1$ gold coin. The captain makes proposals for redistributing the coins, and the crew vote on these proposals. The captain does not vote. For every proposal, each crew member greedily votes “yes” if he gains coins as a result of the proposal, “no” if he loses coins, and passes otherwise. If strictly more crew members vote “yes” than “no,” the proposal takes effect. The captain can make any number of proposals, one after the other. What is the largest number of coins the captain can accumulate?
[b]p4.[/b] There are $100$ food trucks in a circle and $10$ gnomes who sample their menus. For the first course, all the gnomes eat at different trucks. For each
course after the first,
gnome #$1$ moves $1$ truck left or right and eats there;
gnome #$2$ moves $2$ trucks left or right and eats there;
...
gnome #$10$ moves $10$ trucks left or right and eats there.
All gnomes move at the same time. After some number of courses, each food truck had served at least one gnome. Show that at least one gnome ate at some food truck twice.
[b]p5.[/b] The town of Lumenville has $100$ houses and is preparing for the math festival. The Tesla wiring company lays lengths of power wire in straight lines between the houses so that power flows between any two houses, possibly by passing through other houses.The Edison lighting company hangs strings of lights in straight lines between pairs of houses so that each house is connected by a string to exactly one other. Show that however the houses are arranged, the Edison company can always hang their strings of lights so that the total length of the strings is no more than the total length of the power wires the Tesla company used.
[img]https://cdn.artofproblemsolving.com/attachments/9/2/763de9f4138b4dc552247e9316175036c649b6.png[/img]
[u]Round 2[/u]
[b]p6.[/b] What is the largest number of zeros that could appear at the end of $1^n + 2^n + 3^n + 4^n$, where n can be any positive integer?
[b]p7.[/b] A tennis academy has $2023$ members. For every group of 1011 people, there is a person outside of the group who played a match against everyone in it. Show there is someone who has played against all $2022$ other members.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].