Found problems: 14842
2017 Harvard-MIT Mathematics Tournament, 8
Marisa has a collection of $2^8-1=255$ distinct nonempty subsets of $\{1, 2, 3, 4, 5, 6, 7, 8\}$. For each step she takes two subsets chosen uniformly at random from the collection, and replaces them with either their union or their intersection, chosen randomly with equal probability. (The collection is allowed to contain repeated sets.) She repeats this process $2^8-2=254$ times until there is only one set left in the collection. What is the expected size of this set?
2015 India Regional MathematicaI Olympiad, 4
Suppose \(40\) objects are placed along a circle at equal distances. In how many ways can \(3\) objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?
2015 Portugal MO, 6
For what values of $n$ is it possible to mark $n$ points on the plane so that each point has at least three other points at distance $1$?
2014 Junior Regional Olympiad - FBH, 5
Let $ABCDEF$ be a hexagon. Sides and diagonals of hexagon are colored in two colors: blue and yellow. Prove that there exist a triangle with vertices from set $\{A,B,C,D,E,F\}$ which sides are all same colour
IV Soros Olympiad 1997 - 98 (Russia), 9.12
One day, Professor Umzar Azum decided to fry dumplings for dinner. He took out a frying pan, opened a pack of dumplings, but suddenly thought about the question: how many dumplings could he fit in his frying pan? Measuring the sizes of the frying pan and dumplings, the professor came to the conclusion that the dumplings have the shape of a semicircle, the diameter of which is four times smaller than the diameter of the frying pan. Show how on the frying pan it is possible to place (without overlap):
a) $20$ pieces of dumplings;
b) $24$ pieces of dumplings; .
(The problem boils down to placing, without overlapping, the appropriate number of identical semicircles inside a circle with a diameter four times larger.)
[i]Note: We (the authors of the problem) do not know the answer to the question whether it is possible to place 25 semicircles in a circle with a diameter four times smaller, and even more so we do not know what the largest number of such semicircles is. We will welcome any progress in solving the problem and evaluate it accordingly.
[/i]
1983 IMO Longlists, 45
Let two glasses, numbered $1$ and $2$, contain an equal quantity of liquid, milk in glass $1$ and coffee in glass $2$. One does the following: Take one spoon of mixture from glass $1$ and pour it into glass $2$, and then take the same spoon of the new mixture from glass $2$ and pour it back into the first glass. What happens after this operation is repeated $n$ times, and what as $n$ tends to infinity?
2021 Francophone Mathematical Olympiad, 2
Evariste has drawn twelve triangles as follows, so that two consecutive triangles share exactly one edge.
[img]https://cdn.artofproblemsolving.com/attachments/6/2/50377e7ad5fb1c40e36725e43c7eeb1e3c2849.png[/img]
Sophie colors every triangle side in red, green or blue. Among the $3^{24}$ possible colorings, how many have the property that every triangle has one edge of each color?
1982 Swedish Mathematical Competition, 5
Each point in a $12 \times 12$ array is colored red, white or blue. Show that it is always possible to find $4$ points of the same color forming a rectangle with sides parallel to the sides of the array.
2022 Belarus - Iran Friendly Competition, 3
Let $n > k$ be positive integers and let $F$ be a family of finite sets with the following
properties:
i. $F$ contains at least $\binom{n}{k}+ 1$ distinct sets containing exactly $k$ elements;
ii. For any two sets $A, B \in F$ their union, i.e., $A \cup B$ also belongs to $F$.
Prove that $F$ contains at least three sets with at least $n$ elements.
2006 Germany Team Selection Test, 3
Consider a $m\times n$ rectangular board consisting of $mn$ unit squares. Two of its unit squares are called [i]adjacent[/i] if they have a common edge, and a [i]path[/i] is a sequence of unit squares in which any two consecutive squares are adjacent. Two parths are called [i]non-intersecting[/i] if they don't share any common squares.
Each unit square of the rectangular board can be colored black or white. We speak of a [i]coloring[/i] of the board if all its $mn$ unit squares are colored.
Let $N$ be the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge. Let $M$ be the number of colorings of the board for which there exist at least two non-intersecting black paths from the left edge of the board to its right edge.
Prove that $N^{2}\geq M\cdot 2^{mn}$.
2021 IMO Shortlist, N2
Let $n \geqslant 100$ be an integer. Ivan writes the numbers $n, n+1, \ldots, 2 n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.
2017 Indonesia Juniors, day 2
p1. The parabola $y = ax^2 + bx$, $a < 0$, has a vertex $C$ and intersects the $x$-axis at different points $A$ and $B$. The line $y = ax$ intersects the parabola at different points $A$ and $D$. If the area of triangle $ABC$ is equal to $|ab|$ times the area of triangle $ABD$, find the value of $ b$ in terms of $a$ without use the absolute value sign.
p2. It is known that $a$ is a prime number and $k$ is a positive integer. If $\sqrt{k^2-ak}$ is a positive integer, find the value of $k$ in terms of $a$.
p3. There are five distinct points, $T_1$, $T_2$, $T_3$, $T_4$, and $T$ on a circle $\Omega$. Let $t_{ij}$ be the distance from the point $T$ to the line $T_iT_j$ or its extension. Prove that $\frac{t_{ij}}{t_{jk}}=\frac{TT_i}{TT_k}$ and $\frac{t_{12}}{t_{24}}=\frac{t_{13}}{t_{34}}$
[img]https://cdn.artofproblemsolving.com/attachments/2/8/07fff0a36a80708d6f6ec6708f609d080b44a2.png[/img]
p4. Given a $7$-digit positive integer sequence $a_1, a_2, a_3, ..., a_{2017}$ with $a_1 < a_2 < a_3 < ...<a_{2017}$. Each of these terms has constituent numbers in non-increasing order. Is known that $a_1 = 1000000$ and $a_{n+1}$ is the smallest possible number that is greater than $a_n$. As For example, we get $a_2 = 1100000$ and $a_3 = 1110000$. Determine $a_{2017}$.
p5. At the oil refinery in the Duri area, pump-1 and pump-2 are available. Both pumps are used to fill the holding tank with volume $V$. The tank can be fully filled using pump-1 alone within four hours, or using pump-2 only in six hours. Initially both pumps are used simultaneously for $a$ hours. Then, charging continues using only pump-1 for $ b$ hours and continues again using only pump-2 for $c$ hours. If the operating cost of pump-1 is $15(a + b)$ thousand per hour and pump-2 operating cost is $4(a + c)$ thousand per hour, determine $ b$ and $c$ so that the operating costs of all pumps are minimum (express $b$ and $c$ in terms of $a$). Also determine the possible values of $a$.
2021 Durer Math Competition (First Round), 5
There are $n$ distinct lines in three-dimensional space such that no two lines are parallel and no three lines meet at one point. What is the maximal possible number of planes determined by these $n$ lines?
We say that a plane is determined if it contains at least two of the lines.
2018 Iran MO (2nd Round), 5
Lamps of the hall switch by only five keys. Every key is connected to one or more lamp(s). By switching every key, all connected lamps will be switched too. We know that no two keys have same set of connected lamps with each other. At first all of the lamps are off. Prove that someone can switch just three keys to turn at least two lamps on.
2022 Kosovo National Mathematical Olympiad, 1
Ana has $22$ coins. She can take from her friends either $6$ coins or $18$ coins, or she can give $12$ coins to her friends. She can do these operations many times she wants. Find the least number of coins Ana can have.
1972 All Soviet Union Mathematical Olympiad, 173
One-round hockey tournament is finished (each plays with each one time, the winner gets $2$ points, looser -- $0$, and $1$ point for draw). For arbitrary subgroup of teams there exists a team (may be from that subgroup) that has got an odd number of points in the games with the teams of the subgroup. Prove that there was even number of the participants.
2014 South africa National Olympiad, 5
Let $n > 1$ be an integer. An $n \times n$-square is divided into $n^2$ unit squares. Of these unit squares, $n$ are coloured green and $n$ are coloured blue, and all remaining ones are coloured white. Are there more such colourings for which there is exactly one green square in each row and exactly one blue square in each column; or colourings for which there is exactly one green square and exactly one blue square in each row?
2021 Serbia National Math Olympiad, 6
A finite sequence of natural numbers $a_1, a_2, \dots, a_n$ is given. A sub-sequence $a_{k+1}, a_{k+2}, \dots, a_l$ will be called a [i]repetition[/i] if there exists a natural number $p\leq \frac{l-k}2$ such that $a_i=a_{i+p}$ for $k+1\leq i\leq l-p$, but $a_i\neq a_{i+p}$ for $i=k$ (if $k>0$) and $i=l-p+1$ (if $l<n$).
Show that the sequence contains less than $n$ repetitions.
2019 Balkan MO Shortlist, C4
A town-planner has built an isolated city whose road network consists of $2N$ roundabouts, each connecting exactly three roads. A series of tunnels and bridges ensure that all roads in the town meet only at roundabouts. All roads are two-way, and each roundabout is oriented clockwise.
Vlad has recently passed his driving test, and is nervous about roundabouts. He starts driving from his house, and always takes the first edit at each roundabout he encounters. It turns out his journey incluldes every road in the town in both directions before he arrives back at the starting point in the starting direction. For what values of $N$ is this possible?
2018 All-Russian Olympiad, 3
A positive integer $k$ is given. Initially, $N$ cells are marked on an infinite checkered plane. We say that the cross of a cell $A$ is the set of all cells lying in the same row or in the same column as $A$. By a turn, it is allowed to mark an unmarked cell $A$ if the cross of $A$ contains at least $k$ marked cells. It appears that every cell can be marked in a sequence of such turns. Determine the smallest possible value of $N$.
2024 UMD Math Competition Part I, #20
There are eight seats at a round table. Six adults $A_1, \ldots, A_6$ and two children sit around the table. The two children are not allowed to six next to each other. All the seating configurations where the children are not seated next to each other are equally likely. What is the probability that the adults $A_1$ and $A_2$ end up sitting next to each other?\[
\mathrm a. ~4/15\qquad \mathrm b. ~2/7 \qquad \mathrm c. ~2/9 \qquad\mathrm d. ~1/3\qquad\mathrm e. ~1/5\qquad\]
Kvant 2024, M2815
There is a set of $2n$ chips of $n$ different colors, two chips of each color. The chips are randomly placed in a row. Prove that the probability that there are two adjacent chips of the same color in a row is greater than $1/2$.
[i]From the folklore[/i]
2003 Iran MO (2nd round), 3
$n$ volleyball teams have competed to each other (each $2$ teams have competed exactly $1$ time.). For every $2$ distinct teams like $A,B$, there exist exactly $t$ teams which have lost their match with $A,B$. Prove that $n=4t+3$. (Notabene that in volleyball, there doesn’t exist tie!)
2011 Korea National Olympiad, 4
Let $k,n$ be positive integers. There are $kn$ points $P_1, P_2, \cdots, P_{kn}$ on a circle. We can color each points with one of color $ c_1, c_2, \cdots , c_k $. In how many ways we can color the points satisfying the following conditions?
(a) Each color is used $ n $ times.
(b) $ \forall i \not = j $, if $ P_a $ and $ P_b $ is colored with color $ c_i $ , and $ P_c $ and $ P_d $ is colored with color $ c_j $, then the segment $ P_a P_b $ and segment $ P_c P_d $ doesn't meet together.
1993 India National Olympiad, 5
Show that there is a natural number $n$ such that $n!$ when written in decimal notation ends exactly in 1993 zeros.