This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2011 Israel National Olympiad, 1

We are given 5771 weights weighing 1,2,3,...,5770,5771. We partition the weights into $n$ sets of equal weight. What is the maximal $n$ for which this is possible?

2023 BMT, Tie 1

Mataio has a weighted die numbered $1$ to $6$, where the probability of rolling a side $n$ for $1 \le n \le 6$ is inversely proportional to the value of $n$. If Mataio rolls the die twice, what is the probability that the sum of the two rolls is $7$?

MMATHS Mathathon Rounds, 2017

[u]Round 1[/u] [b]p1.[/b] Jom and Terry both flip a fair coin. What is the probability both coins show the same side? [b]p2.[/b] Under the same standard air pressure, when measured in Fahrenheit, water boils at $212^o$ F and freezes at $32^o$ F. At thesame standard air pressure, when measured in Delisle, water boils at $0$ D and freezes at $150$ D. If x is today’s temperature in Fahrenheit and y is today’s temperature expressed in Delisle, we have $y = ax + b$. What is the value of $a + b$? (Ignore units.) [b]p3.[/b] What are the last two digits of $5^1 + 5^2 + 5^3 + · · · + 5^{10} + 5^{11}$? [u]Round 2[/u] [b]p4.[/b] Compute the average of the magnitudes of the solutions to the equation $2x^4 + 6x^3 + 18x^2 + 54x + 162 = 0$. [b]p5.[/b] How many integers between $1$ and $1000000$ inclusive are both squares and cubes? [b]p6.[/b] Simon has a deck of $48$ cards. There are $12$ cards of each of the following $4$ suits: fire, water, earth, and air. Simon randomly selects one card from the deck, looks at the card, returns the selected card to the deck, and shuffles the deck. He repeats the process until he selects an air card. What is the probability that the process ends without Simon selecting a fire or a water card? [u]Round 3[/u] [b]p7.[/b] Ally, Beth, and Christine are playing soccer, and Ally has the ball. Each player has a decision: to pass the ball to a teammate or to shoot it. When a player has the ball, they have a probability $p$ of shooting, and $1 - p$ of passing the ball. If they pass the ball, it will go to one of the other two teammates with equal probability. Throughout the game, $p$ is constant. Once the ball has been shot, the game is over. What is the maximum value of $p$ that makes Christine’s total probability of shooting the ball $\frac{3}{20}$ ? [b]p8.[/b] If $x$ and $y$ are real numbers, then what is the minimum possible value of the expression $3x^2 - 12xy + 14y^2$ given that $x - y = 3$? [b]p9.[/b] Let $ABC$ be an equilateral triangle, let $D$ be the reflection of the incenter of triangle $ABC$ over segment $AB$, and let $E$ be the reflection of the incenter of triangle $ABD$ over segment $AD$. Suppose the circumcircle $\Omega$ of triangle $ADE$ intersects segment $AB$ again at $X$. If the length of $AB$ is $1$, find the length of $AX$. [u]Round 4[/u] [b]p10.[/b] Elaine has $c$ cats. If she divides $c$ by $5$, she has a remainder of $3$. If she divides $c$ by $7$, she has a remainder of $5$. If she divides $c$ by $9$, she has a remainder of $7$. What is the minimum value $c$ can be? [b]p11.[/b] Your friend Donny offers to play one of the following games with you. In the first game, he flips a fair coin and if it is heads, then you win. In the second game, he rolls a $10$-sided die (its faces are numbered from $1$ to $10$) $x$ times. If, within those $x$ rolls, the number $10$ appears, then you win. Assuming that you like winning, what is the highest value of $x$ where you would prefer to play the coin-flipping game over the die-rolling game? [b]p12.[/b] Let be the set $X = \{0, 1, 2, ..., 100\}$. A subset of $X$, called $N$, is defined as the set that contains every element $x$ of $X$ such that for any positive integer $n$, there exists a positive integer $k$ such that n can be expressed in the form $n = x^{a_1}+x^{a_2}+...+x^{a_k}$ , for some integers $a_1, a_2, ..., a_k$ that satisfy $0 \le a_1 \le a_2 \le ... \le a_k$. What is the sum of the elements in $N$? PS. You should use hide for answers. Rounds 5-7 have be posted [url=https://artofproblemsolving.com/community/c4h2782880p24446580]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1994 Czech And Slovak Olympiad IIIA, 3

A convex $1994$-gon $M$ is given in the plane. A closed polygonal line consists of $997$ of its diagonals. Every vertex is adjacent to exactly one diagonal. Each diagonal divides $M$ into two sides, and the smaller of the numbers of edges on the two sides of $M$ is defined to be the length of the diagonal. Is it posible to have (a) $991$ diagonals of length $3$ and $6$ of length $2$? (b) $985$ diagonals of length $6, 4$ of length $8$, and $8$ of length $3$?

2018 Estonia Team Selection Test, 1

There are distinct points $O, A, B, K_1, . . . , K_n, L_1, . . . , L_n$ on a plane such that no three points are collinear. The open line segments $K_1L_1, . . . , K_nL_n$ are coloured red, other points on the plane are left uncoloured. An allowed path from point $O$ to point $X$ is a polygonal chain with first and last vertices at points $O$ and $X$, containing no red points. For example, for $n = 1$, and $K_1 = (-1, 0)$, $L_1 = (1, 0)$, $O = (0,-1)$, and $X = (0,1)$, $OK_1X$ and $OL_1X$ are examples of allowed paths from $O$ to $X$, there are no shorter allowed paths. Find the least positive integer n such that it is possible that the first vertex that is not $O$ on any shortest possible allowed path from $O$ to $A$ is closer to $B$ than to $A$, and the first vertex that is not $O$ on any shortest possible allowed path from $O$ to $B$ is closer to $A$ than to $B$.

Maryland University HSMC part II, 2023.2

Let $n \ge 2$ be an integer. There are $n$ houses in a town. All distances between pairs of houses are different. Every house sends a visitor to the house closest to it. Find all possible values of $n$ (with full justification) for which we can design a town with $n$ houses where every house is visited.

1947 Kurschak Competition, 3

What is the smallest number of disks radius $\frac12$ that can cover a disk radius $1$?

2015 Math Hour Olympiad, 8-10

[u]Round 1[/u] [b]p1.[/b] Six pirates – Captain Jack and his five crewmen – sit in a circle to split a treasure of $99$ gold coins. Jack must decide how many coins to take for himself and how many to give each crewman (not necessarily the same number to each). The five crewmen will then vote on Jack's decision. Each is greedy and will vote “aye” only if he gets more coins than each of his two neighbors. If a majority vote “aye”, Jack's decision is accepted. Otherwise Jack is thrown overboard and gets nothing. What is the most coins Captain Jack can take for himself and survive? [b]p2[/b]. Rose and Bella take turns painting cells red and blue on an infinite piece of graph paper. On Rose's turn, she picks any blank cell and paints it red. Bella, on her turn, picks any blank cell and paints it blue. Bella wins if the paper has four blue cells arranged as corners of a square of any size with sides parallel to the grid lines. Rose goes first. Show that she cannot prevent Bella from winning. [img]https://cdn.artofproblemsolving.com/attachments/d/6/722eaebed21a01fe43bdd0dedd56ab3faef1b5.png[/img] [b]p3.[/b] A $25\times 25$ checkerboard is cut along the gridlines into some number of smaller square boards. Show that the total length of the cuts is divisible by $4$. For example, the cuts shown on the picture have total length $16$, which is divisible by $4$. [img]https://cdn.artofproblemsolving.com/attachments/c/1/e152130e48b804fe9db807ef4f5cd2cbad4947.png[/img] [b]p4.[/b] Each robot in the Martian Army is equipped with a battery that lasts some number of hours. For any two robots, one's battery lasts at least three times as long as the other's. A robot works until its battery is depleted, then recharges its battery until it is full, then goes back to work, and so on. A battery that lasts $N$ hours takes exactly $N$ hours to recharge. Prove that there will be a moment in time when all the robots are recharging (so you can invade the planet). [b]p5.[/b] A casino machine accepts tokens of $32$ different colors, one at a time. For each color, the player can choose between two fixed rewards. Each reward is up to $\$10$ cash, plus maybe another token. For example, a blue token always gives the player a choice of getting either $\$5$ plus a red token or $\$3$ plus a yellow token; a black token can always be exchanged either for $\$10$ (but no token) or for a brown token (but no cash). A player may keep playing as long as he has a token. Rob and Bob each have one white token. Rob watches Bob play and win $\$500$. Prove that Rob can win at least $\$1000$. [img]https://cdn.artofproblemsolving.com/attachments/6/6/e55614bae92233c9b2e7d66f5f425a18e6475a.png [/img] [u]Round 2[/u] [b]p6.[/b] The sum of $2015$ rational numbers is an integer. The product of every pair of them is also an integer. Prove that they are all integers. (A rational number is one that can be written as $m/n$, where $m$ and $n$ are integers and $n\ne 0$.) [b]p7.[/b] An $N \times N$ table is filled with integers such that numbers in cells that share a side differ by at most $1$. Prove that there is some number that appears in the table at least $N$ times. For example, in the $5 \times 5$ table below the numbers $1$ and $2$ appear at least $5$ times. [img]https://cdn.artofproblemsolving.com/attachments/3/8/fda513bcfbe6834d88fb8ca0bfcdb504d8b859.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

EMCC Guts Rounds, 2022

[u]Round 1[/u] [b]p1.[/b] Let $ABCDEF$ be a regular hexagon. How many acute triangles have all their vertices among the vertices of $ABCDEF$? [b]p2.[/b] A rectangle has a diagonal of length $20$. If the width of the rectangle is doubled, the length of the diagonal becomes $22$. Given that the width of the original rectangle is $w$, compute $w^2$. [b]p3.[/b] The number $\overline{2022A20B22}$ is divisible by 99. What is $A + B$? [u]Round 2[/u] [b]p4.[/b] How many two-digit positive integers have digits that sum to at least $16$? [b]p5.[/b] For how many integers $k$ less than $10$ do there exist positive integers x and y such that $k =x^2 - xy + y^2$? [b]p6.[/b] Isosceles trapezoid $ABCD$ is inscribed in a circle of radius $2$ with $AB \parallel CD$, $AB = 2$, and one of the interior angles of the trapezoid equal to $110^o$. What is the degree measure of minor arc $CD$? [u]Round 3[/u] [b]p7.[/b] In rectangle $ALEX$, point $U$ lies on side $EX$ so that $\angle AUL = 90^o$. Suppose that $UE = 2$ and $UX = 12$. Compute the square of the area of $ALEX$. [b]p8.[/b] How many digits does $20^{22}$ have? [b]p9.[/b] Compute the units digit of $3 + 3^3 + 3^{3^3} + ... + 3^{3^{...{^3}}}$ , where the last term of the series has $2022$ $3$s. [u]Round 4[/u] [b]p10.[/b] Given that $\sqrt{x - 1} + \sqrt{x} = \sqrt{x + 1}$ for some real number $x$, the number $x^2$ can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [b]p11.[/b] Eric the Chicken Farmer arranges his $9$ chickens in a $3$-by-$3$ grid, with each chicken being exactly one meter away from its closest neighbors. At the sound of a whistle, each chicken simultaneously chooses one of its closest neighbors at random and moves $\frac12$ of a unit towards it. Given that the expected number of pairs of chickens that meet can be written as $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers, compute $p + q$. [b]p12.[/b] For a positive integer $n$, let $s(n)$ denote the sum of the digits of $n$ in base $10$. Find the greatest positive integer $n$ less than $2022$ such that $s(n) = s(n^2)$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2949432p26408285]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022-23 IOQM India, 10

Consider the $10$-digit number $M=9876543210$. We obtain a new $10$-digit number from $M$ according to the following rule: we can choose one or more disjoint pairs of adjacent digits in $M$ and interchange the digits in these chosen pairs, keeping the remaining digits in their own places. For example, from $M=9\underline{87}6 \underline{54} 3210$ by interchanging the $2$ underlined pairs, and keeping the others in their places, we get $M_{1}=9786453210$. Note that any number of (disjoint) pairs can be interchanged. Find the number of new numbers that can be so obtained from $M$.

2022 Serbia JBMO TST, 4

Initially in every cell of a $5\times 5$ board is the number $0$. In one move you may take any cell of this board and add $1$ to it and all of its adjacent cells (two cells are adjacent if they share an edge). After a finite number of moves, number $n$ is written in all cells. Find all possible values of $n$.

2020 Romania EGMO TST, P2

Let $n$ be a positive integer. In how many ways can we mark cells on an $n\times n$ board such that no two rows and no two columns have the same number of marked cells? [i]Selim Bahadir, Turkey[/i]

2017 ELMO Shortlist, 2

The edges of $K_{2017}$ are each labeled with $1,2,$ or $3$ such that any triangle has sum of labels at least $5.$ Determine the minimum possible average of all $\dbinom{2017}{2}$ labels. (Here $K_{2017}$ is defined as the complete graph on 2017 vertices, with an edge between every pair of vertices.) [i]Proposed by Michael Ma[/i]

2002 Romania Team Selection Test, 3

There are $n$ players, $n\ge 2$, which are playing a card game with $np$ cards in $p$ rounds. The cards are coloured in $n$ colours and each colour is labelled with the numbers $1,2,\ldots ,p$. The game submits to the following rules: [list]each player receives $p$ cards. the player who begins the first round throws a card and each player has to discard a card of the same colour, if he has one; otherwise they can give an arbitrary card. the winner of the round is the player who has put the greatest card of the same colour as the first one. the winner of the round starts the next round with a card that he selects and the play continues with the same rules. the played cards are out of the game.[/list] Show that if all cards labelled with number $1$ are winners, then $p\ge 2n$. [i]Barbu Berceanu[/i]

2011 HMNT, 1

Five of James’ friends are sitting around a circular table to play a game of Fish. James chooses a place between two of his friends to pull up a chair and sit. Then, the six friends divide themselves into two disjoint teams, with each team consisting of three consecutive players at the table. If the order in which the three members of a team sit does not matter, how many possible (unordered) pairs of teams are possible?

MMPC Part II 1958 - 95, 1962

[b]p1.[/b] Consider this statement: An equilateral polygon circumscribed about a circle is also equiangular. Decide whether this statement is a true or false proposition in euclidean geometry. If it is true, prove it; if false, produce a counterexample. [b]p2.[/b] Show that the fraction $\frac{x^2-3x+1}{x-3}$ has no value between $1$ and $5$, for any real value of $x$. [b]p3.[/b] A man walked a total of $5$ hours, first along a level road and then up a hill, after which he turned around and walked back to his starting point along the same route. He walks $4$ miles per hour on the level, three miles per hour uphill, and $r$ miles per hour downhill. For what values of $r$ will this information uniquely determine his total walking distance? [b]p4.[/b] A point $P$ is so located in the interior of a rectangle that the distance of $P$ from one comer is $5$ yards, from the opposite comer is $14$ yards, and from a third comer is $10$ yards. What is the distance from $P$ to the fourth comer? [b]p5.[/b] Each small square in the $5$ by $5$ checkerboard shown has in it an integer according to the following rules: $\begin{tabular}{|l|l|l|l|l|} \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline \end{tabular}$ i. Each row consists of the integers $1, 2, 3, 4, 5$ in some order. ii. Тhе order of the integers down the first column has the same as the order of the integers, from left to right, across the first row and similarly fог any other column and the corresponding row. Prove that the diagonal squares running from the upper left to the lower right contain the numbers $1, 2, 3, 4, 5$ in some order. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Iran MO (2nd Round), 2

A circle is divided into $2n$ equal by $2n$ points. Ali draws $n+1$ arcs, of length $1,2,\ldots,n+1$. Prove that we can find two arcs, such that one of them is inside in the other one.

2015 Miklos Schweitzer, 7

We call a bar of width ${w}$ on the surface of the unit sphere ${\Bbb{S}^2}$, a spherical segment, centered at the origin, which has width ${w}$ and is symmetric with respect to the origin. Prove that there exists a constant ${c>0}$, such that for any positive integer ${n}$ the surface ${\Bbb{S}^2}$ can be covered with ${n}$ bars of the same width so that any point is contained in no more than ${c\sqrt{n}}$ bars.

2005 Germany Team Selection Test, 3

Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible. [i]Proposed by Horst Sewerin, Germany[/i]

2020 Purple Comet Problems, 20

A storage depot is a pyramid with height $30$ and a square base with side length $40$. Determine how many cubical $3\times 3\times 3$ boxes can be stored in this depot if the boxes are always packed so that each of their edges is parallel to either an edge of the base or the altitude of the pyramid.

2023 Austrian Junior Regional Competition, 3

Alice and Bob play a game on a strip of $n \ge 3$ squares with two game pieces. At the beginning, Alice’s piece is on the first square while Bob’s piece is on the last square. The figure shows the starting position for a strip of $ n = 7$ squares. [img]https://cdn.artofproblemsolving.com/attachments/1/7/c636115180fd624cbeec0c6adda31b4b89ed60.png[/img] The players alternate. In each move, they advance their own game piece by one or two squares in the direction of the opponent’s piece. The piece has to land on an empty square without jumping over the opponent’s piece. Alice makes the first move with her own piece. If a player cannot move, they lose. For which $n$ can Bob ensure a win no matter how Alice plays? For which $n$ can Alice ensure a win no matter how Bob plays? [i](Karl Czakler)[/i]

2020 Dutch BxMO TST, 1

For an integer $n \ge 3$ we consider a circle with $n$ points on it. We place a positive integer at each point, where the numbers are not necessary need to be different. Such placement of numbers is called [i]stable [/i] as three numbers next to always have product $n$ each other. For how many values of $n$ with $3 \le n \le 2020$ is it possible to place numbers in a stable way?

2020 Princeton University Math Competition, A4/B5

Let $P$ be the power set of $\{1, 2, 3, 4\}$ (meaning the elements of P are the subsets of $\{1, 2, 3, 4\}$). How many subsets $S$ of $P$ are there such that no two distinct integers $a, b \in \{1, 2, 3, 4\}$ appear together in exactly one element of $S$?

2021 China Team Selection Test, 5

Find the smallest real $\alpha$, such that for any convex polygon $P$ with area $1$, there exist a point $M$ in the plane, such that the area of convex hull of $P\cup Q$ is at most $\alpha$, where $Q$ denotes the image of $P$ under central symmetry with respect to $M$.

2005 Tuymaada Olympiad, 3

The organizers of a mathematical congress found that if they accomodate any participant in a room the rest can be accomodated in double rooms so that 2 persons living in each room know each other. Prove that every participant can organize a round table on graph theory for himself and an even number of other people so that each participant of the round table knows both his neigbours. [i]Proposed by S. Berlov, S. Ivanov[/i]