This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 12

1983 Swedish Mathematical Competition, 5

Show that a unit square can be covered with three equal disks with radius less than $\frac{1}{\sqrt{2}}$. What is the smallest possible radius?

1995 Austrian-Polish Competition, 2

Let $X= \{A_1, A_2, A_3, A_4\}$ be a set of four distinct points in the plane. Show that there exists a subset $Y$ of $X$ with the property that there is no (closed) disk $K$ such that $K\cap X = Y$.

1984 Polish MO Finals, 5

A regular hexagon of side $1$ is covered by six unit disks. Prove that none of the vertices of the hexagon is covered by two (or more) discs.

2021 Estonia Team Selection Test, 3

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

2021 Taiwan TST Round 1, G

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

2021 Thailand TST, 2

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

2019 Tournament Of Towns, 3

Two equal non-intersecting wooden disks, one gray and one black, are glued to a plane. A triangle with one gray side and one black side can be moved along the plane so that the disks remain outside the triangle, while the colored sides of the triangle are tangent to the disks of the same color (the tangency points are not the vertices). Prove that the line that contains the bisector of the angle between the gray and black sides always passes through some fixed point of the plane. (Egor Bakaev, Pavel Kozhevnikov, Vladimir Rastorguev) (Senior version[url=https://artofproblemsolving.com/community/c6h2102856p15209040] here[/url])

Russian TST 2021, P2

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

1947 Kurschak Competition, 3

What is the smallest number of disks radius $\frac12$ that can cover a disk radius $1$?

2020 IMO Shortlist, G4

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

2021 Estonia Team Selection Test, 3

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

1977 Bundeswettbewerb Mathematik, 2

On a plane are given three non-collinear points $A, B, C$. We are given a disk of diameter different from that of the circle passing through $A, B, C$ large enough to cover all three points. Construct the fourth vertex of the parallelogram $ABCD$ using only this disk (The disk is to be used as a circular ruler, for constructing a circle passing through two given points).