This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2016 Croatia Team Selection Test, Problem 2

Let $S$ be a set of $N \ge 3$ points in the plane. Assume that no $3$ points in $S$ are collinear. The segments with both endpoints in $S$ are colored in two colors. Prove that there is a set of $N - 1$ segments of the same color which don't intersect except in their endpoints such that no subset of them forms a polygon with positive area.

2024 Putnam, B1

Let $n$ and $k$ be positive integers. The square in the $i$th row and $j$th column of an $n$-by-$n$ grid contains the number $i+j-k$. For which $n$ and $k$ is it possible to select $n$ squares from the grid, no two in the same row or column, such that the numbers contained in the selected squares are exactly $1,\,2,\,\ldots,\,n$?

2004 Canada National Olympiad, 2

How many ways can $ 8$ mutually non-attacking rooks be placed on the $ 9\times9$ chessboard (shown here) so that all $ 8$ rooks are on squares of the same color? (Two rooks are said to be attacking each other if they are placed in the same row or column of the board.) [asy]unitsize(3mm); defaultpen(white); fill(scale(9)*unitsquare,black); fill(shift(1,0)*unitsquare); fill(shift(3,0)*unitsquare); fill(shift(5,0)*unitsquare); fill(shift(7,0)*unitsquare); fill(shift(0,1)*unitsquare); fill(shift(2,1)*unitsquare); fill(shift(4,1)*unitsquare); fill(shift(6,1)*unitsquare); fill(shift(8,1)*unitsquare); fill(shift(1,2)*unitsquare); fill(shift(3,2)*unitsquare); fill(shift(5,2)*unitsquare); fill(shift(7,2)*unitsquare); fill(shift(0,3)*unitsquare); fill(shift(2,3)*unitsquare); fill(shift(4,3)*unitsquare); fill(shift(6,3)*unitsquare); fill(shift(8,3)*unitsquare); fill(shift(1,4)*unitsquare); fill(shift(3,4)*unitsquare); fill(shift(5,4)*unitsquare); fill(shift(7,4)*unitsquare); fill(shift(0,5)*unitsquare); fill(shift(2,5)*unitsquare); fill(shift(4,5)*unitsquare); fill(shift(6,5)*unitsquare); fill(shift(8,5)*unitsquare); fill(shift(1,6)*unitsquare); fill(shift(3,6)*unitsquare); fill(shift(5,6)*unitsquare); fill(shift(7,6)*unitsquare); fill(shift(0,7)*unitsquare); fill(shift(2,7)*unitsquare); fill(shift(4,7)*unitsquare); fill(shift(6,7)*unitsquare); fill(shift(8,7)*unitsquare); fill(shift(1,8)*unitsquare); fill(shift(3,8)*unitsquare); fill(shift(5,8)*unitsquare); fill(shift(7,8)*unitsquare); draw(scale(9)*unitsquare,black);[/asy]

Mid-Michigan MO, Grades 5-6, 2014

[b]p1.[/b] Find any integer solution of the puzzle: $WE+ST+RO+NG=128$ (different letters mean different digits between $1$ and $9$). [b]p2.[/b] A $5\times 6$ rectangle is drawn on the piece of graph paper (see the figure below). The side of each square on the graph paper is $1$ cm long. Cut the rectangle along the sides of the graph squares in two parts whose areas are equal but perimeters are different by $2$ cm. $\begin{tabular}{|l|l|l|l|l|l|} \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline \end{tabular}$ [b]p3.[/b] Three runners started simultaneously on a $1$ km long track. Each of them runs the whole distance at a constant speed. Runner $A$ is the fastest. When he runs $400$ meters then the total distance run by runners $B$ and $C$ together is $680$ meters. What is the total combined distance remaining for runners $B$ and $C$ when runner $A$ has $100$ meters left? [b]p4.[/b] There are three people in a room. Each person is either a knight who always tells the truth or a liar who always tells lies. The first person said «We are all liars». The second replied «Only you are a liar». Is the third person a liar or a knight? [b]p5.[/b] A $5\times 8$ rectangle is divided into forty $1\times 1$ square boxes (see the figure below). Choose 24 such boxes and one diagonal in each chosen box so that these diagonals don't have common points. $\begin{tabular}{|l|l|l|l|l|l|l|l|} \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline \end{tabular}$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024/2025 TOURNAMENT OF TOWNS, P1

Baron Munchausen took several cards and wrote a positive integer on each one (some numbers may be the same). The baron reports that he has used only two distinct digits to do that. He also reports that among the leftmost digits of the sums of integers on each pair of these cards there are all the digits from 1 to 9 . Can it occur that the baron is right? Maxim Didin

1984 Brazil National Olympiad, 2

Each day $289$ students are divided into $17$ groups of $17$. No two students are ever in the same group more than once. What is the largest number of days that this can be done?

1997 Tournament Of Towns, (525) 2

Baron Munchausen plays billiards on a table with the shape of an equilateral triangle. He claims to have shot a ball from one of the sides of this table so that it passed through a certain point three times in three different directions and then returned to the original point on the side. Can that be true, assuming that the usual law of reflection holds? (Μ Evdokimov)

MathLinks Contest 3rd, 3

On a $2004\times 2004$ chessboard we place $2004$ white knights$^1$ in the upper row, and $2004$ black ones in the lowest row. After a finite number of regular chess moves$^2$ , we get the opposite situation where the black ones are on the top and the white ones on the bottom lines. In a [i]turn [/i] we make a move with each of the pieces of a color. If you know that each square except those on which the knights originally lie, must not be used more than once in this process, and that after each turn no $2$ knights of the same color can be attacking each other$^3$ , determine the number of ways in which this can be accomplished. $^1$ also known as horses $^2$ the knight can be moved either one square horizontally and two vertically or two squares horizontally and one vertically, in any direction on both horizontal and vertical lines $^3$ a knight is attacking another knight, if in one chess move, the first one can be placed on the second one’s place

2023 Myanmar IMO Training, 7

Let $n \geq 2$ be a positive integer. A total of $2n$ balls are coloured with $n$ colours so that there are two balls of each colour. These balls are put inside $n$ cylindrical boxes with two balls in each box, one on top of the other. Phoe Wa Lone has an empty cylindrical box and his goal is to sort the balls so that balls of the same colour are grouped together in each box. In a [i]move[/i], Phoe Wa Lone can do one of the following: [list] [*]Select a box containing exactly two balls and reverse the order of the top and the bottom balls. [*]Take a ball $b$ at the top of a non-empty box and either put it in an empty box, or put it in the box only containing the ball of the same colour as $b$. [/list] Find the smallest positive integer $N$ such that for any initial placement of the balls, Phoe Wa Lone can always achieve his goal using at most $N$ moves in total.

2002 All-Russian Olympiad, 4

There are some markets in a city. Some of them are joined by one-way streets, such that for any market there are exactly two streets to leave it. Prove that the city may be partitioned into $1014$ districts such that streets join only markets from different districts, and by the same one-way for any two districts (either only from first to second, or vice-versa).

2021 China Team Selection Test, 6

Proof that there exist constant $\lambda$, so that for any positive integer $m(\ge 2)$, and any lattice triangle $T$ in the Cartesian coordinate plane, if $T$ contains exactly one $m$-lattice point in its interior(not containing boundary), then $T$ has area $\le \lambda m^3$. PS. lattice triangles are triangles whose vertex are lattice points; $m$-lattice points are lattice points whose both coordinates are divisible by $m$.

2016 IMO, 6

There are $n\ge 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps,each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will ever occupy the same intersection point at the same time. (a) Prove that Geoff can always fulfill his wish if $n$ is odd. (b) Prove that Geoff can never fulfill his wish if $n$ is even.

1978 Germany Team Selection Test, 1

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

1963 All Russian Mathematical Olympiad, 034

Given $n$ different positive numbers $a_1,a_2,...,a_n$. We construct all the possible sums (from $1$ to $n$ terms). Prove that among those sums there are at least $n(n+1)/2$ different ones.

1998 Chile National Olympiad, 7

When rolling two normal dice, the set of possible outcomes of the sum of the points is $2, 3, 3, 4,4, 4,..., 11, 11,12$. Notice that this sequence can be obtained from the identity $$(x + x^2 + x^3 + x^4 + x^5 + x^6) (x + x^2 + x^3 + x^4 + x^5 + x^6) = x^2 + 2x^3 + 3x^4 +... + 2x^{11} + x^{12}.$$ Design a crazy pair of dice, that is, two other cubes, not necessarily the same, with a natural number indicated on each face, such that the set of possible results of the sum of its points is equal to of two normal dice.

LMT Guts Rounds, 2019 S

[u]Round 9[/u] [b]p25.[/b] Circle $\omega_1$ has radius $1$ and diameter $AB$. Let circle $\omega_2$ be a circle withm aximum radius such that it is tangent to $AB$ and internally tangent to $\omega_1$. A point $C$ is then chosen such that $\omega_2$ is the incircle of triangle $ABC$. Compute the area of $ABC$. [b]p26.[/b] Two particles lie at the origin of a Cartesian plane. Every second, the first particle moves from its initial position $(x, y)$ to one of either $(x +1, y +2)$ or $(x -1, y -2)$, each with probability $0.5$. Likewise, every second the second particle moves from it’s initial position $(x, y)$ to one of either $(x +2, y +3)$ or $(x -2, y -3)$, each with probability $0.5$. Let $d$ be the distance distance between the two particles after exactly one minute has elapsed. Find the expected value of $d^2$. [b]p27.[/b] Find the largest possible positive integer $n$ such that for all positive integers $k$ with $gcd (k,n) = 1$, $k^2 -1$ is a multiple of $n$. [u]Round 10[/u] [b]p28.[/b] Let $\vartriangle ABC$ be a triangle with side lengths $AB = 13$, $BC = 14$, $C A = 15$. Let $H$ be the orthcenter of $\vartriangle ABC$, $M$ be the midpoint of segment $BC$, and $F$ be the foot of altitude from $C$ to $AB$. Let $K$ be the point on line $BC$ such that $\angle MHK = 90^o$. Let $P$ be the intersection of $HK$ and $AB$. Let $Q$ be the intersection of circumcircle of $\vartriangle FPK$ and $BC$. Find the length of $QK$. [b]p29.[/b] Real numbers $(x, y, z)$ are chosen uniformly at random from the interval $[0,2\pi]$. Find the probability that $$\cos (x) \cdot \cos (y)+ \cos(y) \cdot \cos (z)+ \cos (z) \cdot \cos(x) + \sin (x) \cdot \sin (y)+ \sin (y) \cdot \sin (z)+ \sin (z) \cdot \sin (x)+1$$ is positive. [b]p30.[/b] Find the number of positive integers where each digit is either $1$, $3$, or $4$, and the sum of the digits is $22$. [u]Round 11[/u] [b]p31.[/b] In $\vartriangle ABC$, let $D$ be the point on ray $\overrightarrow{CB}$ such that $AB = BD$ and let $E$ be the point on ray $\overrightarrow{AC}$ such that $BC =CE$. Let $L$ be the intersection of $AD$ and circumcircle of $\vartriangle ABC$. The exterior angle bisector of $\angle C$ intersects $AD$ at $K$ and it follows that $AK = AB +BC +C A$. Given that points $B$, $E$, and $L$ are collinear, find $\angle C AB$. [b]p32.[/b] Let $a$ be the largest root of the equation $x^3 -3x^2 +1 0$. Find the remainder when $\lfloor a^{2019} \rfloor$ is divided by $17$. [b]p33.[/b] For all $x, y \in Q$, functions $f , g ,h : Q \to Q$ satisfy $f (x + g (y)) = g (h( f (x)))+ y$. If $f (6)=2$, $g\left( \frac12 \right) = 2$, and $h \left( \frac72 \right)= 2$, find all possible values of $f (2019)$. [u]Round 12[/u] [b]p34.[/b] An $n$-polyomino is formed by joining $n$ unit squares along their edges. A free polyomino is a polyomino considered up to congruence. That is, two free polyominos are the same if there is a combination of translations, rotations, and reflections that turns one into the other. Let $P(n)$ be the number of free $n$-polyominos. For example, $P(3) = 2$ and $P(4) = 5$. Estimate $P(20)+P(19)$. If your estimate is $E$ and the actual value is $A$, your score for this problem will be $$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$ [b]p35.[/b] Estimate $$\sum^{2019}_{k=1} sin(k),$$ where $k$ is measured in radians. If your estimate is $E$ and the actual value is $A$, your score for this problem will be $\max \, (0,15-10 \cdot |E - A|)$ . [b]p36.[/b] For a positive integer $n$, let $r_{10}(n)$ be the number of $10$-tuples of (not necessarily positive) integers $(a_1,a_2,... ,a_9,a_{10})$ such that $$a^2_1 +a^2_2+ ...+a^2_9+a^2_{10}= n.$$ Estimate $r_{10}(20)+r_{10}(19)$. If your estimate is $E$ and the actual value is $A$, your score for this problem will be$$\max \, \left( 0, \left \lfloor 15-10 \cdot \left|\log_{10} \left( \frac{A}{E} \right) \right| \right \rfloor \right).$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3165997p28809441]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3166012p28809547]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Georgia Team Selection Test, 1

1. The transformation $ n \to 2n \minus{} 1$ or $ n \to 3n \minus{} 1$, where $ n$ is a positive integer, is called the 'change' of $ n$. Numbers $ a$ and $ b$ are called 'similar', if there exists such positive integer, that can be got by finite number of 'changes' from both $ a$ and $ b$. Find all positive integers 'similar' to $ 2005$ and less than $ 2005$.

2013 China Western Mathematical Olympiad, 7

Label sides of a regular $n$-gon in clockwise direction in order 1,2,..,n. Determine all integers n ($n\geq 4$) satisfying the following conditions: (1) $n-3$ non-intersecting diagonals in the $n$-gon are selected, which subdivide the $n$-gon into $n-2$ non-overlapping triangles; (2) each of the chosen $n-3$ diagonals are labeled with an integer, such that the sum of labeled numbers on three sides of each triangles in (1) is equal to the others;

2004 Germany Team Selection Test, 2

Let $x_1,\ldots, x_n$ and $y_1,\ldots, y_n$ be real numbers. Let $A = (a_{ij})_{1\leq i,j\leq n}$ be the matrix with entries \[a_{ij} = \begin{cases}1,&\text{if }x_i + y_j\geq 0;\\0,&\text{if }x_i + y_j < 0.\end{cases}\] Suppose that $B$ is an $n\times n$ matrix with entries $0$, $1$ such that the sum of the elements in each row and each column of $B$ is equal to the corresponding sum for the matrix $A$. Prove that $A=B$.

2020 Junior Balkan Team Selection Tests - Moldova, 7

There are written $n$ distinct positive integers. An operation is defined as follows: we chose two numers $a$ and $b$ written on the table; we erase them; we write at their places $a+1$ and $b-1$. Find the smallest value of the difference the biggest and the smallest written numbers after some operations.

2011 Pre-Preparation Course Examination, 2

We say that a covering of a $m\times n$ rectangle with dominos has a wall if there exists a horizontal or vertical line that splits the rectangle into two smaller rectangles and doesn't cut any of the dominos. prove that if these three conditions are satisfied: [b]a)[/b] $mn$ is an even number [b]b)[/b] $m\ge 5$ and $n\ge 5$ [b]c)[/b] $(m,n)\neq(6,6)$ then we can cover the rectangle with dominos in such a way that we have no walls. (20 points)

2008 China Girls Math Olympiad, 1

[i](a)[/i] Determine if the set $ \{1,2,\ldots,96\}$ can be partitioned into 32 sets of equal size and equal sum. [i](b)[/i] Determine if the set $ \{1,2,\ldots,99\}$ can be partitioned into 33 sets of equal size and equal sum.

2017 Peru IMO TST, 2

Let $n\geq3$ an integer. Mario draws $20$ lines in the plane, such that there are not two parallel lines. For each [b]equilateral triangle[/b] formed by three of these lines, Mario receives three coins. For each [b]isosceles[/b] and [b]non-equilateral[/b] triangle ([u]at the same time[/u]) formed by three of these lines, Mario receives a coin. How is the maximum number of coins that can Mario receive?

2010 China Team Selection Test, 2

In a football league, there are $n\geq 6$ teams. Each team has a homecourt jersey and a road jersey with different color. When two teams play, the home team always wear homecourt jersey and the road team wear their homecourt jersey if the color is different from the home team's homecourt jersey, or otherwise the road team shall wear their road jersey. It is required that in any two games with 4 different teams, the 4 teams' jerseys have at least 3 different color. Find the least number of color that the $n$ teams' $2n$ jerseys may use.

1992 Hungary-Israel Binational, 3

We are given $100$ strictly increasing sequences of positive integers: $A_{i}= (a_{1}^{(i)}, a_{2}^{(i)},...), i = 1, 2,..., 100$. For $1 \leq r, s \leq 100$ we define the following quantities: $f_{r}(u)=$ the number of elements of $A_{r}$ not exceeding $n$; $f_{r,s}(u) =$ the number of elements of $A_{r}\cap A_{s}$ not exceeding $n$. Suppose that $f_{r}(n) \geq\frac{1}{2}n$ for all $r$ and $n$. Prove that there exists a pair of indices $(r, s)$ with $r \not = s$ such that $f_{r,s}(n) \geq\frac{8n}{33}$ for at least five distinct $n-s$ with $1 \leq n < 19920.$