This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2020 USOMO, 5

A finite set $S$ of points in the coordinate plane is called [i]overdetermined[/i] if $|S|\ge 2$ and there exists a nonzero polynomial $P(t)$, with real coefficients and of degree at most $|S|-2$, satisfying $P(x)=y$ for every point $(x,y)\in S$. For each integer $n\ge 2$, find the largest integer $k$ (in terms of $n$) such that there exists a set of $n$ distinct points that is [i]not[/i] overdetermined, but has $k$ overdetermined subsets. [i]Proposed by Carl Schildkraut[/i]

2010 Bundeswettbewerb Mathematik, 4

Find all numbers that can be expressed in exactly $2010$ different ways as the sum of powers of two with non-negative exponents, each power appearing as a summand at most three times. A sum can also be made from just one summand.

2019 Saudi Arabia Pre-TST + Training Tests, 3.2

It is given a graph whose vertices are positive integers and an edge between numbers $a$ and $b$ exists if and only if $a + b + 1 | a^2 + b^2 + 1$. Is this graph connected?

1990 IMO Shortlist, 17

Unit cubes are made into beads by drilling a hole through them along a diagonal. The beads are put on a string in such a way that they can move freely in space under the restriction that the vertices of two neighboring cubes are touching. Let $ A$ be the beginning vertex and $ B$ be the end vertex. Let there be $ p \times q \times r$ cubes on the string $ (p, q, r \geq 1).$ [i](a)[/i] Determine for which values of $ p, q,$ and $ r$ it is possible to build a block with dimensions $ p, q,$ and $ r.$ Give reasons for your answers. [i](b)[/i] The same question as (a) with the extra condition that $ A \equal{} B.$

1990 Austrian-Polish Competition, 9

$a_1, a_2, ... , a_n$ is a sequence of integers such that every non-empty subsequence has non-zero sum. Show that we can partition the positive integers into a finite number of sets such that if $x_i$ all belong to the same set, then $a_1x_1 + a_2x_2 + ... + a_nx_n$ is non-zero.

2023 Princeton University Math Competition, A2

On an infinite triangular lattice, there is a single atom at a lattice point. We allow for four operations as illustrated in Figure 1. In words, one could take an existing atom, split it into three atoms, and place them at adjacent lattice points in one of the two displayed fashions (a “split”). One could also reverse the process, i.e. taking three existing atoms in the displayed configurations, and merge them into a single atom at the center (a “merge”). [center][img]https://cdn.artofproblemsolving.com/attachments/2/5/41abc4dc8fb8235e5eb0c98638f9e4a0896c05.png[/img][/center] Figure 1: The four possible operations on an atom. Assume that, after finitely many operations, there is again only a single atom remaining on the lattice. Show that this is possible if and only if the final atom is contained in the sublattice implied by Figure 2. [center][img]https://cdn.artofproblemsolving.com/attachments/b/4/7a7bd10a1862947c250fa07571c061367a5a71.png[/img][/center] Figure 2: The possible positions for the final atom is the green sublattice. The position of the original atom is marked in purple.

2020 Belarusian National Olympiad, 11.1

A $20 \times 20$ checkered board is cut into several squares with integer side length. The size of a square is it's side length. What is the maximum amount of different sizes this squares can have?

2020 Princeton University Math Competition, B1

Runey is speaking his made-up language, Runese, that consists only of the “letters” zap, zep, zip, zop, and zup. Words in Runese consist of anywhere between $1$ and $5$ letters, inclusive. As well, Runey can choose to add emphasis on any letter(s) that he chooses in a given word, hence making it a totally distinct word! What is the maximum number of possible words in Runese?

2023 Indonesia TST, 3

Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called [i]nice[/i] if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\] Prove that the number of nice functions is at least $n^n$.

2008 Tuymaada Olympiad, 6

A set $ X$ of positive integers is called [i]nice[/i] if for each pair $ a$, $ b\in X$ exactly one of the numbers $ a \plus{} b$ and $ |a \minus{} b|$ belongs to $ X$ (the numbers $ a$ and $ b$ may be equal). Determine the number of nice sets containing the number 2008. [i]Author: Fedor Petrov[/i]

1947 Moscow Mathematical Olympiad, 133

Twenty cubes of the same size and appearance are made of either aluminum or of heavier duralumin. How can one find the number of duralumin cubes using not more than $11$ weighings on a balance without weights? (We assume that all cubes can be made of aluminum, but not all of duralumin.)

1975 Poland - Second Round, 3

In a certain family, a husband and wife made the following agreement: If the wife washes the dishes one day, the husband washes the dishes the next day. However, if the husband washes the dishes one day, then who washes the dishes the next day is decided by drawing a coin. Let $ p_n $ denote the probability of the event that the husband washes the dishes on the $ n $-th day of the contract. Prove that there is a limit $ \lim_{n\to \infty} p_n $ and calculate it. We assume $ p_1 = \frac{1}{2} $.

2024 Junior Balkan Team Selection Tests - Romania, P4

Let $n\geqslant 3$ be a positive integer and $N=\{1,2,\ldots,n\}$ and let $k>0$ be a real number. Let's associate each non-empty of $N{}$ with a point in the plane, such that any two distinct subsets correspond to different points. If the absolute value of the difference between the arithmetic means of the elements of two distinct non-empty subsets of $N{}$ is at most $k{}$ we connect the points associated with these subsets with a segment. Determine the minimum value of $k{}$ such that the points associated with any two distinct non-empty subsets of $N{}$ are connected by a segment or a broken line. [i]Cristi Săvescu[/i]

1999 May Olympiad, 5

Ana, Beatriz, Carlos, Diego and Emilia play a chess tournament. Each player faces each of the other four only once. Each player gets $2$ points if he wins the match, $1$ point if he draws and $0$ point if he loses. At the end of the tournament, it turns out that the scores of the $5$ players are all different. Find the maximum number of ties there could be in the tournament and justify why there could not be a higher number of ties.

2003 China Team Selection Test, 1

Let $S$ be the set of points inside and on the boarder of a regular haxagon with side length 1. Find the least constant $r$, such that there exists one way to colour all the points in $S$ with three colous so that the distance between any two points with same colour is less than $r$.

2018 Malaysia National Olympiad, A3

On each side of a triangle, $5$ points are chosen (other than the vertices of the triangle) and these $15$ points are colored red. How many ways are there to choose four red points such that they form the vertices of a quadrilateral?

2013 CentroAmerican, 2

Around a round table the people $P_1, P_2,..., P_{2013}$ are seated in a clockwise order. Each person starts with a certain amount of coins (possibly none); there are a total of $10000$ coins. Starting with $P_1$ and proceeding in clockwise order, each person does the following on their turn: [list][*]If they have an even number of coins, they give all of their coins to their neighbor to the left. [*]If they have an odd number of coins, they give their neighbor to the left an odd number of coins (at least $1$ and at most all of their coins) and keep the rest.[/list] Prove that, repeating this procedure, there will necessarily be a point where one person has all of the coins.

2005 Finnish National High School Mathematics Competition, 5

A finite sequence is said to be [i]disorderly[/i], if no two terms of the sequence have their average in between them. For example, $(0, 2, 1)$ is disorderly, for $1 = \frac{0+2}{2}$ is not in between $0$ and $2$, and the other averages $\frac{0+1}{2} = \frac{1}{2}$ and $\frac{2+1}{2} = 1\frac{1}{2}$ do not even occur in the sequence. Prove that for every $n \in \Bbb{N}$ there is a disorderly sequence enumerating the numbers $0, 1,\ldots , n$ without repetitions.

2019 Tuymaada Olympiad, 8

Andy, Bess, Charley and Dick play on a $1000 \times 1000$ board. They make moves in turn: Andy first, then Bess, then Charley and finally Dick, after that Andy moves again and so on. At each move a player must paint several unpainted squares forming $2 \times 1, 1 \times 2, 1 \times 3$, or $3 \times 1$ rectangle. The player that cannot move loses. Prove that some three players can cooperate to make the fourth player lose.

2011 Ukraine Team Selection Test, 4

Tags: combinatorics , set , sum
Suppose an ordered set of $ ({{a} _{1}}, \ {{a} _{2}},\ \ldots,\ {{a} _{n}}) $ real numbers, $n \ge 3 $. It is possible to replace the number $ {{a} _ {i}} $, $ i = \overline {2, \ n-1} $ by the number $ a_ {i} ^ {*} $ that $ {{a} _ {i}} + a_ {i} ^ {*} = {{a} _ {i-1}} + {{a} _ {i + 1}} $. Let $ ({{b} _ {1}},\ {{b} _ {2}}, \ \ldots, \ {{b} _ {n}}) $ be the set with the largest sum of numbers that can be obtained from this, and $ ({{c} _ {1}},\ {{c} _ {2}}, \ \ldots, \ {{c} _ {n}}) $ is a similar set with the least amount. For the odd $n \ge 3 $ and set $ (1,\ 3, \ \ldots, \ n, \ 2, \ 4, \ \ldots,\ n-1) $ find the values of the expressions $ {{b} _ {1}} + {{b} _ {2}} + \ldots + {{b} _ {n}} $ and $ {{c} _ {1}} + {{c} _ {2}} + \ldots + {{c} _ {n}} $.

2017 Kazakhstan National Olympiad, 5

Tags: combinatorics , set , logic
Consider all possible sets of natural numbers $(x_1, x_2, ..., x_{100})$ such that $1\leq x_i \leq 2017$ for every $i = 1,2, ..., 100$. We say that the set $(y_1, y_2, ..., y_{100})$ is greater than the set $(z_1, z_2, ..., z_{100})$ if $y_i> z_i$ for every $i = 1,2, ..., 100$. What is the largest number of sets that can be written on the board, so that any set is not more than the other set?

2010 Rioplatense Mathematical Olympiad, Level 3, 3

Alice and Bob play the following game. To start, Alice arranges the numbers $1,2,\ldots,n$ in some order in a row and then Bob chooses one of the numbers and places a pebble on it. A player's [i]turn[/i] consists of picking up and placing the pebble on an adjacent number under the restriction that the pebble can be placed on the number $k$ at most $k$ times. The two players alternate taking turns beginning with Alice. The first player who cannot make a move loses. For each positive integer $n$, determine who has a winning strategy.

2003 China Team Selection Test, 2

Suppose $A\subseteq \{0,1,\dots,29\}$. It satisfies that for any integer $k$ and any two members $a,b\in A$($a,b$ is allowed to be same), $a+b+30k$ is always not the product of two consecutive integers. Please find $A$ with largest possible cardinality.

2023 Girls in Mathematics Tournament, 4

Determine all $n$ positive integers such that exists an $n\times n$ where we can write $n$ times each of the numbers from $1$ to $n$ (one number in each cell), such that the $n$ sums of numbers in each line leave $n$ distinct remainders in the division by $n$, and the $n$ sums of numbers in each column leave $n$ distinct remainders in the division by $n$.

DMM Individual Rounds, 2021

[b]p1.[/b] There are $4$ mirrors facing the inside of a $5\times 7$ rectangle as shown in the figure. A ray of light comes into the inside of a rectangle through $A$ with an angle of $45^o$. When it hits the sides of the rectangle, it bounces off at the same angle, as shown in the diagram. How many times will the ray of light bounce before it reaches any one of the corners $A$, $B$, $C$, $D$? A bounce is a time when the ray hit a mirror and reflects off it. [img]https://cdn.artofproblemsolving.com/attachments/1/e/d6ea83941cdb4b2dab187d09a0c45782af1691.png[/img] [b]p2.[/b] Jerry cuts $4$ unit squares out from the corners of a $45\times 45$ square and folds it into a $43\times 43\times 1$ tray. He then divides the bottom of the tray into a $43\times 43$ grid and drops a unit cube, which lands in precisely one of the squares on the grid with uniform probability. Suppose that the average number of sides of the cube that are in contact with the tray is given by $\frac{m}{n}$ where $m, n$ are positive integers that are relatively prime. Find $m + n$. [b]p3.[/b] Compute $2021^4 - 4 \cdot 2023^4 + 6 \cdot 2025^4 - 4 \cdot 2027^4 + 2029^4$. [b]p4.[/b] Find the number of distinct subsets $S \subseteq \{1, 2,..., 20\}$, such that the sum of elements in $S$ leaves a remainder of $10$ when divided by $32$. [b]p5.[/b] Some $k$ consecutive integers have the sum $45$. What is the maximum value of $k$? [b]p6.[/b] Jerry picks $4$ distinct diagonals from a regular nonagon (a regular polygon with $9$-sides). A diagonal is a segment connecting two vertices of the nonagon that is not a side. Let the probability that no two of these diagonals are parallel be $\frac{m}{n}$ where $m, n$ are positive integers that are relatively prime. Find $m + n$. [b]p7.[/b] The Olympic logo is made of $5$ circles of radius $1$, as shown in the figure [img]https://cdn.artofproblemsolving.com/attachments/1/7/9dafe6b72aa8471234afbaf4c51e3e97c49ee5.png[/img] Suppose that the total area covered by these $5$ circles is $a+b\pi$ where $a, b$ are rational numbers. Find $10a + 20b$. [b]p8.[/b] Let $P(x)$ be an integer polynomial (polynomial with integer coefficients) with $P(-5) = 3$ and $P(5) = 23$. Find the minimum possible value of $|P(-2) + P(2)|$. [b]p9. [/b]There exists a unique tuple of rational numbers $(a, b, c)$ such that the equation $$a \log 10 + b \log 12 + c \log 90 = \log 2025.$$ What is the value of $a + b + c$? [b]p10.[/b] Each grid of a board $7\times 7$ is filled with a natural number smaller than $7$ such that the number in the grid at the $i$th row and $j$th column is congruent to $i + j$ modulo $7$. Now, we can choose any two different columns or two different rows, and swap them. How many different boards can we obtain from a finite number of swaps? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].