Found problems: 14842
2003 Finnish National High School Mathematics Competition, 5
Players Aino and Eino take turns choosing numbers from the set $\{0,..., n\}$ with $n\in \Bbb{N}$ being fixed in advance.
The game ends when the numbers picked by one of the players include an arithmetic progression of length $4.$
The one who obtains the progression wins.
Prove that for some $n,$ the starter of the game wins. Find the smallest such $n.$
2018 India IMO Training Camp, 1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.
[i]Proposed by Jeck Lim, Singapore[/i]
2019 Korea National Olympiad, 8
There are two countries $A$ and $B$, where each countries have $n(\ge 2)$ airports. There are some two-way flights among airports of $A$ and $B$, so that each airport has exactly $3$ flights. There might be multiple flights among two airports; and there are no flights among airports of the same country. A travel agency wants to plan an [i]exotic traveling course[/i] which travels through all $2n$ airports exactly once, and returns to the initial airport. If $N$ denotes the number of all exotic traveling courses, then prove that $\frac{N}{4n}$ is an even integer.
(Here, note that two exotic traveling courses are different if their starting place are different.)
2000 All-Russian Olympiad Regional Round, 8.4
Two pirates divide the loot, consisting of two bags of coins and a diamond, according to the following rules. First the first pirate takes take a few coins from any bag and transfer them from this bag in the other the same number of coins. Then the second pirate does the same (choosing the bag from which he takes the coins at his discretion) and etc. until you can take coins according to these rules. The pirate who takes the coins last gets the diamond. Who will get the diamond if is each of the pirates trying to get it? Give your answer depending on the initial number of coins in the bags.
1983 IMO Longlists, 25
How many permutations $a_1, a_2, \ldots, a_n$ of $\{1, 2, . . ., n \}$ are sorted into increasing order by at most three repetitions of the following operation: Move from left to right and interchange $a_i$ and $a_{i+1}$ whenever $a_i > a_{i+1}$ for $i$ running from $1$ up to $n - 1 \ ?$
2019 India PRMO, 24
A $1 \times n$ rectangle ($n \geq 1 $) is divided into $n$ unit ($1 \times 1$) squares. Each square of this rectangle is colored red, blue or green. Let $f(n)$ be the number of colourings of the rectangle in which there are an even number of red squares. What is the largest prime factor of $f(9)/f(3)$? (The number of red squares can be zero.)
1986 IMO Longlists, 37
Prove that the set $\{1, 2, . . . , 1986\}$ can be partitioned into $27$ disjoint sets so that no one of these sets contains an arithmetic triple (i.e., three distinct numbers in an arithmetic progression).
2012 Czech And Slovak Olympiad IIIA, 3
Prove that there are two numbers $u$ and $v$, between any $101$ real numbers that apply $100 |u - v| \cdot |1 - uv| \le (1 + u^2)(1 + v^2)$
2018 Dutch BxMO TST, 1
We have $1000$ balls in $40$ different colours, $25$ balls of each colour. Determine the smallest $n$ for which the following holds: if you place the $1000$ balls in a circle, in any arbitrary way, then there are always $n$ adjacent balls which have at least $20$ different colours.
2024 USEMO, 1
There are $1001$ stacks of coins $S_1, S_2, \dots, S_{1001}$. Initially, stack $S_k$ has $k$ coins for each $k = 1,2,\dots,1001$. In an operation, one selects an ordered pair $(i,j)$ of indices $i$ and $j$ satisfying $1 \le i < j \le 1001$ subject to two conditions:
[list]
[*]The stacks $S_i$ and $S_j$ must each have at least $1$ coin.
[*]The ordered pair $(i,j)$ must [i]not[/i] have been selected before.
[/list]
Then, if $S_i$ and $S_j$ have $a$ coins and $b$ coins respectively, one removes $\gcd(a,b)$ coins from each stack.
What is the maximum number of times this operation could be performed?
[i]Galin Totev[/i]
2006 India IMO Training Camp, 3
There are $ n$ markers, each with one side white and the other side black. In the beginning, these $ n$ markers are aligned in a row so that their white sides are all up. In each step, if possible, we choose a marker whose white side is up (but not one of the outermost markers), remove it, and reverse the closest marker to the left of it and also reverse the closest marker to the right of it. Prove that, by a finite sequence of such steps, one can achieve a state with only two markers remaining if and only if $ n \minus{} 1$ is not divisible by $ 3$.
[i]Proposed by Dusan Dukic, Serbia[/i]
2021 Science ON grade VI, 3
Consider positive integers $a<b$ and the set $C\subset\{a,a+1,a+2,\dots ,b-2,b-1,b\}$. Suppose $C$ has more than $\frac{b-a+1}{2}$ elements. Prove that there are two elements $x,y\in C$ that satisfy $x+y=a+b$.
[i] (From "Radu Păun" contest, Radu Miculescu)[/i]
2011 Iran MO (3rd Round), 5
Suppose that $n$ is a natural number. we call the sequence $(x_1,y_1,z_1,t_1),(x_2,y_2,z_2,t_2),.....,(x_s,y_s,z_s,t_s)$ of $\mathbb Z^4$ [b]good[/b] if it satisfies these three conditions:
[b]i)[/b] $x_1=y_1=z_1=t_1=0$.
[b]ii)[/b] the sequences $x_i,y_i,z_i,t_i$ be strictly increasing.
[b]iii)[/b] $x_s+y_s+z_s+t_s=n$. (note that $s$ may vary).
Find the number of good sequences.
[i]proposed by Mohammad Ghiasi[/i]
2003 Tournament Of Towns, 2
Two players in turns color the sides of an $n$-gon. The first player colors any side that has $0$ or $2$ common vertices with already colored sides. The second player colors any side that has exactly $1$ common vertex with already colored sides. The player who cannot move, loses. For which $n$ the second player has a winning strategy?
2025 6th Memorial "Aleksandar Blazhevski-Cane", P1
The road infrastructure in a country consists of an even number of direct roads, each of which is bidirectional. Moreover, for any two cities $X$ and $Y$, there is at most one direct road between the two of them and there exists a sequence $X = X_0, X_1, ..., X_{n - 1}, X_n = Y$ of cities such that for any $i = 0, ..., n - 1$, there exists a direct road between $X_i$ and $X_{i + 1}$.
Prove that all direct roads in this country can be oriented (i.e. each road can become a one-way road) such that each city $X$ is the starting point for an even number of direct roads.
Proposed by [i]Mirko Petrushevski[/i]
2015 Indonesia MO Shortlist, C2
Given $2n$ natural numbers, so that the average arithmetic of those $2n$ number is $2$. If all the number is not more than $2n$. Prove we can divide those $2n$ numbers into $2$ sets, so that the sum of each set to be the same.
2019 Centroamerican and Caribbean Math Olympiad, 2
We have a regular polygon $P$ with 2019 vertices, and in each vertex there is a coin. Two players [i]Azul[/i] and [i]Rojo[/i] take turns alternately, beginning with Azul, in the following way: first, Azul chooses a triangle with vertices in $P$ and colors its interior with blue, then Rojo selects a triangle with vertices in $P$ and colors its interior with red, so that the triangles formed in each move don't intersect internally the previous colored triangles. They continue playing until it's not possible to choose another triangle to be colored. Then, a player wins the coin of a vertex if he colored the greater quantity of triangles incident to that vertex (if the quantities of triangles colored with blue or red incident to the vertex are the same, then no one wins that coin and the coin is deleted). The player with the greater quantity of coins wins the game. Find a winning strategy for one of the players.
[i]Note.[/i] Two triangles can share vertices or sides.
2013 India IMO Training Camp, 1
Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order.
We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.
2005 All-Russian Olympiad, 4
100 people from 25 countries, four from each countries, stay on a circle. Prove that one may partition them onto 4 groups in such way that neither no two countrymans, nor two neighbours will be in the same group.
2010 Switzerland - Final Round, 5
Some sides and diagonals of a regular $ n$-gon form a connected path that visits each vertex exactly once. A [i]parallel pair[/i] of edges is a pair of two different parallel edges of the path. Prove that
(a) if $ n$ is even, there is at least one [i]parallel pair[/i].
(b) if $ n$ is odd, there can't be one single [i]parallel pair[/i].
2023 Belarus Team Selection Test, 3.3
Let $m,n \geqslant 2$ be integers, let $X$ be a set with $n$ elements, and let $X_1,X_2,\ldots,X_m$ be pairwise distinct non-empty, not necessary disjoint subset of $X$. A function $f \colon X \to \{1,2,\ldots,n+1\}$ is called [i]nice[/i] if there exists an index $k$ such that \[\sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \quad \text{for all } i \ne k.\] Prove that the number of nice functions is at least $n^n$.
2007 Estonia National Olympiad, 4
The figure shows a figure of $5$ unit squares, a Greek cross. What is the largest number of Greek crosses that can be placed on a grid of dimensions $8 \times 8$ without any overlaps, with each unit square covering just one square in a grid?
2010 District Olympiad, 1
a) Prove that one cannot assign to each vertex of a cube $ 8$ distinct numbers from the set $\{0, 1, 2, 3, . . . , 11, 12\}$ such that, for every edge, the sum of the two numbers assigned to its vertices is even.
b) Prove that one can assign to each vertex of a cube $8$ distinct numbers from the set $\{0, 1, 2, 3, . . . , 11, 12\}$ such that, for every edge, the sum of the two numbers assigned to its vertices is divisible by $3$.
2007 Junior Balkan Team Selection Tests - Romania, 3
Consider a $n$x$n$ table such that the unit squares are colored arbitrary in black and white, such that exactly three of the squares placed in the corners of the table are white, and the other one is black. Prove that there exists a $2$x$2$ square which contains an odd number of unit squares white colored.
2020 Thailand TSTST, 6
Prove that the unit square can be tiled with rectangles (not necessarily of the same size) similar to a rectangle of size $1\times(3+\sqrt[3]{3})$.