Found problems: 14842
1995 Tournament Of Towns, (453) 2
Four grasshoppers sit at the vertices of a square. Every second, one of them jumps over one of the others to the symmetrical point on the other side (if $X$ jumps over $Y$ to the point $X'$, then $X$, $Y$ and $X'$ lie on a straight line and $XY = YX'$). Prove that after several jumps no three grasshoppers can be:
(a) on a line parallel to a side of the square,
(b) on a straight line.
(AK Kovaldzhy)
2016 PAMO, 2
We have a pile of $2016$ cards and a hat. We take out one card, put it in the hat and then divide the remaining cards into two arbitrary non empty piles. In the next step, we choose one of the two piles, we move one card from this pile to the hat and then divide this pile into two arbitrary non empty piles.
This procedure is repeated several times : in the $k$-th step $(k>1)$ we move one card from one of the piles existing after the step $(k-1)$ to the hat and then divide this pile into two non empty piles.
Is it possible that after some number of steps we get all piles containing three cards each?
1974 All Soviet Union Mathematical Olympiad, 196
Given some red and blue points. Some of them are connected by the segments. Let us call "exclusive" the point, if its colour differs from the colour of more than half of the connected points. Every move one arbitrary "exclusive" point is repainted to the other colour. Prove that after the finite number of moves there will remain no "exclusive" points.
2006 Estonia National Olympiad, 5
A pawn is placed on a square of a $ n \times n$ board. There are two types of legal
moves: (a) the pawn can be moved to a neighbouring square, which shares a common side with the current square; or (b) the pawn can be moved to a neighbouring square, which shares a common vertex, but not a common side with the current square. Any two consecutive moves must be of different type. Find all integers $ n \ge 2$, for which it is possible to choose an initial square and a sequence of moves such that the pawn visits each square exactly once (it is not required that the pawn returns to the initial square).
2009 HMNT, 5
The following grid represents a mountain range; the number in each cell represents the height of the mountain located there. Moving from a mountain of height $a$ to a mountain of height $b$ takes $(b - a)^2$ time. Suppose that you start on the mountain of height $1$ and that you can move up, down, left, or right to get from one mountain to the next. What is the minimum amount of time you need to get to the mountain of height $49$?
[img]https://cdn.artofproblemsolving.com/attachments/0/6/10b07a2b2ae4ba750cfffc3dc678880333c2de.png[/img]
2021 Brazil National Olympiad, 6
In a football championship with $2021$ teams, each team play with another exactly once. The score of the match(es) is three points to the winner, one point to both players if the match end in draw(tie) and zero point to the loser. The final of the tournament will be played by the two highest score teams. Brazil Football Club won the first match, and it has the advantage if in the final score it draws with any other team. Determine the least score such that Brazil Football Club has a [b]chance[/b] to play the final match.
2007 Iran Team Selection Test, 2
Suppose $n$ lines in plane are such that no two are parallel and no three are concurrent. For each two lines their angle is a real number in $[0,\frac{\pi}2]$. Find the largest value of the sum of the $\binom n2$ angles between line.
[i]By Aliakbar Daemi[/i]
2003 Turkey MO (2nd round), 3
An assignment of either a $ 0$ or a $ 1$ to each unit square of an $ m$x$ n$ chessboard is called $ fair$ if the total numbers of $ 0$s and $ 1$s are equal. A real number $ a$ is called $ beautiful$ if there are positive integers $ m,n$ and a fair assignment for the $ m$x$ n$ chessboard such that for each of the $ m$ rows and $ n$ columns , the percentage of $ 1$s on that row or column is not less than $ a$ or greater than $ 100\minus{}a$. Find the largest beautiful number.
2024 Brazil EGMO TST, 2
Let \( n, k \geq 1 \). In a school, there are \( n \) students and \( k \) clubs. Each student participates in at least one of the clubs. One day, a school uniform was established, which could be either blue or red. Each student chose only one of these colors. Every day, the principal visited one of the clubs, forcing all the students in it to switch the colors of the uniforms they wore.
Assuming that the students are distributed in clubs in such a way that any initial choice of uniforms they make, after a certain number of days, it is possible to have at most one student with one of the colors. Show that
\[
n \geq 2^{n-k-1} - 1.
\]
2023 ABMC, Speed
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] Compute $2^2 + 0 \cdot 0 + 2^2 + 3^3$.
[b]p2.[/b] How many total letters (not necessarily distinct) are there in the names Jerry, Justin, Jackie, Jason, and Jeffrey?
[b]p3.[/b] What is the remainder when $20232023$ is divided by $50$?
[b]p4.[/b] Let $ABCD$ be a square. The fraction of the area of $ABCD$ that is the area of the intersection of triangles $ABD$ and $ABC$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p5.[/b] Raymond is playing basketball. He makes a total of $15$ shots, all of which are either worth $2$ or $3$ points. Given he scored a total of $40$ points, how many $2$-point shots did he make?
[b]p6.[/b] If a fair coin is flipped $4$ times, the probability that it lands on heads more often than tails is $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$.
[b]p7.[/b] What is the sum of the perfect square divisors of $640$?
[b]p8.[/b] A regular hexagon and an equilateral triangle have the same perimeter. The ratio of the area between the hexagon and equilateral triangle can be expressed in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p9.[/b] If a cylinder has volume $1024\pi$, radius of $r$ and height $h$, how many ordered pairs of integers $(r, h)$ are possible?
[b]p10.[/b] Pump $A$ can fill up a balloon in $3$ hours, while pump $B$ can fill up a balloon in $5$ hours. Pump $A$ starts filling up a balloon at $12:00$ PM, and pump $B$ is added alongside pump $A$ at a later time. If the balloon is completely filled at $2:00$ PM, how many minutes after $12:00$ PM was Pump $B$ added?
[b]p11.[/b] For some positive integer $k$, the product $81 \cdot k$ has $20$ factors. Find the smallest possible value of $k$.
[b]p12.[/b] Two people wish to sit in a row of fifty chairs. How many ways can they sit in the chairs if they do not want to sit directly next to each other and they do not want to sit with exactly one empty chair between them?
[b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $2$ and $M$ be the midpoint of $BC$. Let $P$ be a point in the same plane such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}-b$, where $a$ and $b$ are positive integers such that $a$ is not divisible by any perfect square aside from $1$. Find $a + b$.
[b]p14.[/b] What are the $2022$nd to $2024$th digits after the decimal point in the decimal expansion of $\frac{1}{27}$ , expressed as a $3$ digit number in that order (i.e the $2022$nd digit is the hundreds digit, $2023$rd digit is the tens digit, and $2024$th digit is the ones digit)?
[b]p15.[/b] After combining like terms, how many terms are in the expansion of $(xyz+xy+yz+xz+x+y+z)^{20}$?
[b]p16.[/b] Let $ABCD$ be a trapezoid with $AB \parallel CD$ where $AB > CD$, $\angle B = 90^o$, and $BC = 12$. A line $k$ is dropped from $A$, perpendicular to line $CD$, and another line $\ell$ is dropped from $C$, perpendicular to line $AD$. $k$ and $\ell$ intersect at $X$. If $\vartriangle AXC$ is an equilateral triangle, the area of $ABCD$ can be written as $m\sqrt{n}$, where $m$ and $n$ are positive integers such that $n$ is not divisible by any perfect square aside from $1$. Find $m + n$.
[b]p17.[/b] If real numbers $x$ and $y$ satisfy $2x^2 + y^2 = 8x$, maximize the expression $x^2 + y^2 + 4x$.
[b]p18.[/b] Let $f(x)$ be a monic quadratic polynomial with nonzero real coefficients. Given that the minimum value of $f(x)$ is one of the roots of $f(x)$, and that $f(2022) = 1$, there are two possible values of $f(2023)$. Find the larger of these two values.
[b]p19.[/b] I am thinking of a positive integer. After realizing that it is four more than a multiple of $3$, four less than a multiple of $4$, four more than a multiple of 5, and four less than a multiple of $7$, I forgot my number. What is the smallest possible value of my number?
[b]p20.[/b] How many ways can Aston, Bryan, Cindy, Daniel, and Evan occupy a row of $14$ chairs such that none of them are sitting next to each other?
[b]p21.[/b] Let $x$ be a positive real number. The minimum value of $\frac{1}{x^2} +\sqrt{x}$ can be expressed in the form \frac{a}{b^{(c/d)}} , where $a$, $b$, $c$, $d$ are all positive integers, $a$ and $b$ are relatively prime, $c$ and $d$ are relatively prime, and $b$ is not divisible by any perfect square. Find $a + b + c + d$.
[b]p22.[/b] For all $x > 0$, the function $f(x)$ is defined as $\lfloor x \rfloor \cdot (x + \{x\})$. There are $24$ possible $x$ such that $f(x)$ is an integer between $2000$ and $2023$, inclusive. If the sum of these $24$ numbers equals $N$, then find $\lfloor N \rfloor$.
Note: Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, called the floor function. Also, $\{x\}$ is defined as $x - \lfloor x \rfloor$, called the fractional part function.
[b]p23.[/b] Let $ABCD$ be a rectangle with $AD = 1$. Let $P$ be a point on diagonal $\overline{AC}$, and let $\omega$ and $\xi$ be the circumcircles of $\vartriangle APB$ and $\vartriangle CPD$, respectively. Line $\overleftrightarrow{AD}$ is extended, intersecting $\omega$ at $X$, and $\xi$ at $Y$ . If $AX = 5$ and $DY = 2$, find $[ABCD]^2$.
Note: $[ABCD]$ denotes the area of the polygon $ABCD$.
[b]p24.[/b] Alice writes all of the three-digit numbers on a blackboard (it’s a pretty big blackboard). Let $X_a$ be the set of three-digit numbers containing a somewhere in its representation, where a is a string of digits. (For example, $X_{12}$ would include $12$, $121$, $312$, etc.) If Bob then picks a value of $a$ at random so $0 \le a \le 999$, the expected number of elements in $X_a$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find$ m + n$.
[b]p25.[/b] Let $f(x) = x^5 + 2x^4 - 2x^3 + 4x^2 + 5x + 6$ and $g(x) = x^4 - x^3 + x^2 - x + 1$. If $a$, $b$, $c$, $d$ are the roots of $g(x)$, then find $f(a) + f(b) + f(c) + f(d)$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Canadian Mathematical Olympiad Qualification Repechage, 5
Each vertex of a regular $11$-gon is colored black or gold. All possible triangles are formed using these vertices. Prove that there are either two congruent triangles with three black vertices or two congruent triangles with three gold vertices.
LMT Team Rounds 2010-20, B10
In a certain Zoom meeting, there are $4$ students. How many ways are there to split them into any number of distinguishable breakout rooms, each with at least $ 1$ student?
2012 CHMMC Fall, 3
A particular graph has $6$ vertices, $12$ edges, and has the property that it contains no Eulerian path; a Eulerian path is a route from vertex to vertex along edges that traces each edge exactly once. Determine all the possible degrees of its vertices in no particular order. There are two solutions, and you need to get both to get credit for this problem.
2012 Brazil Team Selection Test, 2
Into each box of a $ 2012 \times 2012 $ square grid, a real number greater than or equal to $ 0 $ and less than or equal to $ 1 $ is inserted. Consider splitting the grid into $2$ non-empty rectangles consisting of boxes of the grid by drawing a line parallel either to the horizontal or the vertical side of the grid. Suppose that for at least one of the resulting rectangles the sum of the numbers in the boxes within the rectangle is less than or equal to $ 1 $, no matter how the grid is split into $2$ such rectangles. Determine the maximum possible value for the sum of all the $ 2012 \times 2012 $ numbers inserted into the boxes.
2006 Tournament of Towns, 7
An ant craws along a closed route along the edges of a dodecahedron, never going backwards.
Each edge of the route is passed exactly twice. Prove that one of the edges is passed both times in the same direction. (Dodecahedron has $12$ faces in the shape of pentagon, $30$ edges and $20$ vertices; each vertex emitting 3 edges). (8)
2000 Tournament Of Towns, 4
In how many ways can $31$ squares be marked on an $8 \times 8$ chessboard so that no two of the marked squares have a common side?
(R Zhenodarov)
2020 Denmark MO - Mohr Contest, 1
The figure shows $9$ circles connected by $12$ lines. Georg must colour each circle either red or blue. He gets one point for each line connecting circles with different colours. How many points can he at most achieve?
[img]https://cdn.artofproblemsolving.com/attachments/3/9/983d3c5755547246899891db141fe2383f3dc1.png[/img]
2013 China Northern MO, 1
Find the largest positive integer $n$ ($n \ge 3$), so that there is a convex $n$-gon, the tangent of each interior angle is an integer.
2024 Girls in Mathematics Tournament, 1
A word is a sequence of capital letters of our alphabet (that is, there are 26 possible letters). A word is called palindrome if has at least two letters and is spelled the same forward and backward. For example, the words "ARARA" e "NOON" are palindromes, but the words "ESMERALDA" and "A" are not palindromes. We say that a word $x$ contains a word $y$ if there are consecutive letters of $x$ that together form the word $y$. For example, the word "ARARA" contains the word "RARA" and also the word "ARARA", but doesn't contain the word "ARRA".
Compute the number of words of 14-letter that contain some palindrome.
2020 Novosibirsk Oral Olympiad in Geometry, 2
Vitya cut the chessboard along the borders of the cells into pieces of the same perimeter. It turned out that not all of the received parts are equal. What is the largest possible number of parts that Vitya could get?
2007 Switzerland - Final Round, 10
The plane is divided into equilateral triangles of side length $1$. Consider a equilateral triangle of side length $n$ whose sides lie on the grid lines. On every grid point on the edge and inside of this triangle lies a stone. In a move, a unit triangle is selected, which has exactly $2$ corners with is covered with a stone. The two stones are removed, and the third corner is turned a new stone was laid. For which $n$ is it possible that after finitely many moves only one stone left?
LMT Guts Rounds, 2016
[u]Round 1[/u]
[b]p1.[/b] Today, the date $4/9/16$ has the property that it is written with three perfect squares in strictly increasing order. What is the next date with this property?
[b]p2.[/b] What is the greatest integer less than $100$ whose digit sumis equal to its greatest prime factor?
[b]p3.[/b] In chess, a bishop can only move diagonally any number of squares. Find the number of possible squares a bishop starting in a corner of a $20\times 16$ chessboard can visit in finitely many moves, including the square it stars on.
[u]Round 2 [/u]
[b]p4.[/b] What is the fifth smallest positive integer with at least $5$ distinct prime divisors?
[b]p5.[/b] Let $\tau (n)$ be the number of divisors of a positive integer $n$, including $1$ and $n$. Howmany positive integers $n \le 1000$ are there such that $\tau (n) > 2$ and $\tau (\tau (n)) = 2$?
[b]p6.[/b] How many distinct quadratic polynomials $P(x)$ with leading coefficient $1$ exist whose roots are positive integers and whose coefficients sum to $2016$?
[u]Round 3[/u]
[b]p7.[/b] Find the largest prime factor of $112221$.
[b]p8.[/b] Find all ordered pairs of positive integers $(a,b)$ such that $\frac{a^2b^2+1}{ab-1}$ is an integer.
[b]p9.[/b] Suppose $f : Z \to Z$ is a function such that $f (2x)= f (1-x)+ f (1-x)$ for all integers $x$. Find the value of $f (2) f (0) +f (1) f (6)$.
[u]Round 4[/u]
[b]p10.[/b] For any six points in the plane, what is the maximum number of isosceles triangles that have three of the points as vertices?
[b]p11.[/b] Find the sum of all positive integers $n$ such that $\sqrt{n+ \sqrt{n -25}}$ is also a positive integer.
[b]p12.[/b] Distinct positive real numbers are written at the vertices of a regular $2016$-gon. On each diagonal and edge of the $2016$-gon, the sum of the numbers at its endpoints is written. Find the minimum number of distinct numbers that are now written, including the ones at the vertices.
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h3158474p28715078]here[/url]. and 9-12 [url=https://artofproblemsolving.com/community/c3h3162282p28763571]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1992 Brazil National Olympiad, 6
Given a set of n elements, find the largest number of subsets such that no subset is contained in any other
Kvant 2023, M2753
In every row of a grid $100 \times n$ is written a permutation of the numbers $1,2 \ldots, 100$. In one move you can choose a row and swap two non-adjacent numbers with difference $1$. Find the largest possible $n$, such that at any moment, no matter the operations made, no two rows may have the same permutations.
2024 Malaysian IMO Team Selection Test, 4
Zscoder has an simple undirected graph $G$ with $n\ge 3$ vertices. Navi labels a positive integer to each vertex, and places a token at one of the vertex. This vertex is now marked red. In each turn, Zscoder plays with following rule:
$\bullet$ If the token is currently at vertex $v$ with label $t$, then he can move the token along the edges in $G$ (possibly repeating some edges) exactly $t$ times. After these $t$ moves, he marks the current vertex red where the token is at if it is unmarked, or does nothing otherwise, then finishes the turn.
Zscoder claims that he can mark all vertices in $G$ red after finite number of turns, regardless of Navi's labels and starting vertex. What is the minimum number of edges must $G$ have, in terms of $n$?
[i]Proposed by Yeoh Zi Song[/i]