This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2008 Germany Team Selection Test, 3

A rectangle $ D$ is partitioned in several ($ \ge2$) rectangles with sides parallel to those of $ D$. Given that any line parallel to one of the sides of $ D$, and having common points with the interior of $ D$, also has common interior points with the interior of at least one rectangle of the partition; prove that there is at least one rectangle of the partition having no common points with $ D$'s boundary. [i]Author: Kei Irie, Japan[/i]

2019 Peru MO (ONEM), 4

A board that has some of its squares painted black is called [i]acceptable [/i] if there are no four black squares that form a $2 \times 2$ subboard. Find the largest real number $\lambda$ such that for every positive integer $n$ the following proposition holds: mercy: if an $n \times n$ board is acceptable and has fewer than $\lambda n^2$ dark squares, then an additional square black can be painted so that the board is still acceptable.

2001 Greece Junior Math Olympiad, 3

We are given $8$ different weights and a balance without a scale. (a) Find the smallest number of weighings necessary to find the heaviest weight. (b) How many weighting is further necessary to find the second heaviest weight?

2024 All-Russian Olympiad Regional Round, 9.4

The positive integers $1, 2, \ldots, 1000$ are written in some order on one line. Show that we can find a block of consecutive numbers, whose sum is in the interval $(100000; 100500]$.

2021 New Zealand MO, 8

Two cells in a $20 \times 20$ board are adjacent if they have a common edge (a cell is not considered adjacent to itself). What is the maximum number of cells that can be marked in a $20 \times 20$ board such that every cell is adjacent to at most one marked cell?

2008 Bosnia And Herzegovina - Regional Olympiad, 4

$ n$ points (no three being collinear) are given in a plane. Some points are connected and they form $ k$ segments. If no three of these segments form triangle ( equiv. there are no three points, such that each two of them are connected) prove that $ k \leq \left \lfloor \frac {n^{2}}{4}\right\rfloor$

2005 France Team Selection Test, 3

In an international meeting of $n \geq 3$ participants, 14 languages are spoken. We know that: - Any 3 participants speak a common language. - No language is spoken more that by the half of the participants. What is the least value of $n$?

1965 All Russian Mathematical Olympiad, 064

Is it possible to place $1965$ points in a square with side $1$ so that any rectangle of area $1/200$ with sides parallel to the sides of the square contains at least one of these points inside?

2024 China Team Selection Test, 18

Let $m,n\in\mathbb Z_{\ge 0},$ $a_0,a_1,\ldots ,a_m,b_0,b_1,\ldots ,b_n\in\mathbb R_{\ge 0}$ For any integer $0\le k\le m+n,$ define $c_k:=\max_{i+j=k}a_ib_j.$ Proof $$\frac 1{m+n+1}\sum_{k=0}^{m+n}c_k\ge\frac 1{(m+1)(n+1)}\sum_{i=0}^{m}a_i\sum_{j=0}^{n}b_j.$$ [i]Created by Yinghua Ai[/i]

2014 Iran MO (2nd Round), 2

A subset $S$ of positive real numbers is called [i]powerful[/i] if for any two distinct elements $a, b$ of $S$, at least one of $a^{b}$ or $b^{a}$ is also an element of $S$. [b]a)[/b] Give an example of a four elements powerful set. [b]b)[/b] Prove that every finite powerful set has at most four elements.

2015 China Team Selection Test, 4

Let $n$ be a positive integer, let $f_1(x),\ldots,f_n(x)$ be $n$ bounded real functions, and let $a_1,\ldots,a_n$ be $n$ distinct reals. Show that there exists a real number $x$ such that $\sum^n_{i=1}f_i(x)-\sum^n_{i=1}f_i(x-a_i)<1$.

1992 Tournament Of Towns, (357) 6

Consider a polyhedron having $100$ edges. (a) Find the maximal possible number of its edges which can be intersected by a plane (not containing any vertices of the polyhedron) if the polyhedron is convex. (b) Prove that for a non-convex polyhedron this number i. can be as great as $96$, ii. cannot be as great as $100$. (A Andjans, Riga

1962 Leningrad Math Olympiad, grade 7

[b]7.1.[/b] Prove that from the sides of an arbitrary quadrilateral you can fold a trapezoid. [b]7.2 / 6.2[/b] The numbers $A$ and $B$ are relatively prime. What common divisors can have the numbers $A+B$ and $A-B$? [b]7.3. / 6.4[/b] $15$ magazines lie on the table, completely covering it. Prove that it is possible to remove eight of them so that the remaining magz cover at least $7/15$ of the table area. [b]7.4[/b] In a six-digit number that is divisible by $7$, the last digit has been moved to the beginning. Prove that the resulting number is also divisible at $7$. [url=https://artofproblemsolving.com/community/c6h3391057p32066818]7.5*[/url] (asterisk problems in separate posts) [b]7.6 [/b] On sides $AB$ and $ BC$ of triangle $ABC$ , are constructed squares $ABDE$ and $BCKL$ with centers $O_1$ and $O_2$. $M_1$ and $M_2$ are midpoints of segments $DL$ and $AC$. Prove that $O_1M_1O_2M_2$ is a square. [img]https://cdn.artofproblemsolving.com/attachments/8/1/8aa816a84c5ac9de78b396096cf718063de390.png[/img] PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3983459_1962_leningrad_math_olympiad]here[/url].

2022 Bulgarian Spring Math Competition, Problem 11.4

Let $n \geq 2$ be a positive integer. The set $M$ consists of $2n^2-3n+2$ positive rational numbers. Prove that there exists a subset $A$ of $M$ with $n$ elements with the following property: $\forall$ $2 \leq k \leq n$ the sum of any $k$ (not necessarily distinct) numbers from $A$ is not in $A$.

2022 Portugal MO, 1

Raul's class has $15$ students, all with different heights. The Mathematics teacher wants to place them in a queue so that, at the beginning of the queue, they are ordered in ascending order of heights, from then on, they are ordered in descending order and Raul, who He is the tallest in the class, he cannot be at the extremes. In how many different ways is it possible to form this queue?

1975 Spain Mathematical Olympiad, 8

Two real numbers between $0$ and $1$ are randomly chosen. Calculate the probability that any one of them is less than the square of the other.

2014 Peru Iberoamerican Team Selection Test, P6

Determine the largest positive integer $k$ for which there exists a simple graph $G$ of $2014$ vertices that simultaneously satisfies the following conditions: $a)$ $G$ does not contain triangles $b)$ For each $i$ between $1$ and $k$, inclusive, at least one vertex of $G$ has degree $i$ $c)$ No vertex of $G$ has a degree greater than $k$

2025 China Team Selection Test, 5

There are $2025$ people and $66$ colors, where each person has one ball of each color. For each person, their $66$ balls have positive mass summing to one. Find the smallest constant $C$ such that regardless of the mass distribution, each person can choose one ball such that the sum of the chosen balls of each color does not exceed $C$.

2002 Portugal MO, 1

The keyword that Ana Viso chose for her computer has the $7$ characters of her name: A, N, A, V, I, S, O. Sorting all the different words alphabetically formed by all these $7$ characters, Ana's keyword appears in the $881$st position. What it is Ana's keyword?

2014 IFYM, Sozopol, 8

We will call a rectangular table filled with natural numbers [i]“good”[/i], if for each two rows, there exist a column for which its two cells that are also in these two rows, contain numbers of different parity. Prove that for $\forall$ $n>2$ we can erase a column from a [i]good[/i] $n$ x $n$ table so that the remaining $n$ x $(n-1)$ table is also [i]good[/i].

2011 Pre-Preparation Course Examination, 1

We have some cards that have the same look, but at the back of some of them is written $0$ and for the others $1$.(We can't see the back of a card so we can't know what's the number on it's back). we have a machine. we give it two cards and it gives us the product of the numbers on the back of the cards. if we have $m$ cards with $0$ on their back and $n$ cards with $1$ on their back, at least how many times we must use the machine to be sure that we get the number $1$? (15 points)

2011 China Team Selection Test, 3

A positive integer $n$ is known as an [i]interesting[/i] number if $n$ satisfies \[{\ \{\frac{n}{10^k}} \} > \frac{n}{10^{10}} \] for all $k=1,2,\ldots 9$. Find the number of interesting numbers.

1978 IMO Shortlist, 14

Prove that it is possible to place $2n(2n + 1)$ parallelepipedic (rectangular) pieces of soap of dimensions $1 \times 2 \times (n + 1)$ in a cubic box with edge $2n + 1$ if and only if $n$ is even or $n = 1$. [i]Remark[/i]. It is assumed that the edges of the pieces of soap are parallel to the edges of the box.

2021 Argentina National Olympiad Level 2, 4

The sum of several positive integers, not necessarily different, all of them less than or equal to $10$, is equal to $S$. We want to distribute all these numbers into two groups such that the sum of the numbers in each group is less than or equal to $80.$ Determine all values ​​of $S$ for which this is possible.

2020 Regional Olympiad of Mexico Center Zone, 1

There is a board with the shape of an equilateral triangle with side $n$ divided into triangular cells with the shape of equilateral triangles with side $ 1$ (the figure below shows the board when $n = 4$). Each and every triangular cell is colored either red or blue. What is the least number of cells that can be colored blue without two red cells sharing one side? [img]https://cdn.artofproblemsolving.com/attachments/0/1/d1f034258966b319dc87297bdb311f134497b5.png[/img]