Found problems: 14842
MBMT Guts Rounds, 2018
[hide=C stands for Cantor, G stands for Gauss]they had two problem sets under those two names[/hide]
[u]Set 1[/u]
[b]C.1 / G.1[/b] Daniel is exactly one year younger than his friend David. If David was born in the year $2008$, in what year was Daniel born?
[b]C.2 / G.3[/b] Mr. Pham flips three coins. What is the probability that no two coins show the same side?
[b]C.3 / G.2[/b] John has a sheet of white paper which is $3$ cm in height and $4$ cm in width. He wants to paint the sky blue and the ground green so the entire paper is painted. If the ground takes up a third of the page, how much space (in cm$^2$) does the sky take up?
[b]C.4 / G.5[/b] Jihang and Eric are busy fidget spinning. While Jihang spins his fidget spinner at $15$ revolutions per second, Eric only manages $10$ revolutions per second. How many total revolutions will the two have made after $5$ continuous seconds of spinning?
[b]C.5 / G.4[/b] Find the last digit of $1333337777 \cdot 209347802 \cdot 3940704 \cdot 2309476091$.
[u]Set 2[/u]
[b]C.6[/b] Evan, Chloe, Rachel, and Joe are splitting a cake. Evan takes $\frac13$ of the cake, Chloe takes $\frac14$, Rachel takes $\frac15$, and Joe takes $\frac16$. There is $\frac{1}{x}$ of the original cake left. What is $x$?
[b]C.7[/b] Pacman is a $330^o$ sector of a circle of radius $4$. Pacman has an eye of radius $1$, located entirely inside Pacman. Find the area of Pacman, not including the eye.
[b]C.8[/b] The sum of two prime numbers $a$ and $b$ is also a prime number. If $a < b$, find $a$.
[b]C.9[/b] A bus has $54$ seats for passengers. On the first stop, $36$ people get onto an empty bus. Every subsequent stop, $1$ person gets off and $3$ people get on. After the last stop, the bus is full. How many stops are there?
[b]C.10[/b] In a game, jumps are worth $1$ point, punches are worth $2$ points, and kicks are worth $3$ points. The player must perform a sequence of $1$ jump, $1$ punch, and $1$ kick. To compute the player’s score, we multiply the 1st action’s point value by $1$, the $2$nd action’s point value by $2$, the 3rd action’s point value by $3$, and then take the sum. For example, if we performed a punch, kick, jump, in that order, our score would be $1 \times 2 + 2 \times 3 + 3 \times 1 = 11$. What is the maximal score the player can get?
[u]Set 3[/u]
[b]C.11[/b] $6$ students are sitting around a circle, and each one randomly picks either the number $1$ or $2$. What is the probability that there will be two people sitting next to each other who pick the same number?
[b]C.12 / G. 8[/b] You can buy a single piece of chocolate for $60$ cents. You can also buy a packet with two pieces of chocolate for $\$1.00$. Additionally, if you buy four single pieces of chocolate, the fifth one is free. What is the lowest amount of money you have to pay for $44$ pieces of chocolate? Express your answer in dollars and cents (ex. $\$3.70$).
[b]C.13 / G.12[/b] For how many integers $k$ is there an integer solution $x$ to the linear equation $kx + 2 = 14$?
[b]C.14 / G.9[/b] Ten teams face off in a swim meet. The boys teams and girls teams are ranked independently, each team receiving some number of positive integer points, and the final results are obtained by adding the points for the boys and the points for the girls. If Blair’s boys got $7$th place while the girls got $5$th place (no ties), what is the best possible total rank for Blair?
[b]C.15 / G.11[/b] Arlene has a square of side length $1$, an equilateral triangle with side length $1$, and two circles with radius $1/6$. She wants to pack her four shapes in a rectangle without items piling on top of each other. What is the minimum possible area of the rectangle?
PS. You should use hide for answers. C16-30/G10-15, G25-30 have been posted [url=https://artofproblemsolving.com/community/c3h2790676p24540145]here[/url] and G16-25 [url=https://artofproblemsolving.com/community/c3h2790679p24540159]here [/url] . Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2022-23 IOQM India, 19
Consider a string of $n$ $1's$. We wish to place some $+$ signs in between so that the sum is $1000$. For instance, if $n=190$, one may put $+$ signs so as to get $11$ ninety times and $1$ ten times , and get the sum $1000$. If $a$ is the number of positive integers $n$ for which it is possible to place $+$ signs so as to get the sum $1000$, then find the sum of digits of $a$.
2022 Taiwan TST Round 2, 4
Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$.
Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.
2021 ELMO Problems, 5
Let $n$ and $k$ be positive integers. Two infinite sequences $\{s_i\}_{i\geq 1}$ and $\{t_i\}_{i\geq 1}$ are [i]equivalent[/i] if, for all positive integers $i$ and $j$, $s_i = s_j$ if and only if $t_i = t_j$. A sequence $\{r_i\}_{i\geq 1}$ has [i]equi-period[/i] $k$ if $r_1, r_2, \ldots $ and $r_{k+1}, r_{k+2}, \ldots$ are equivalent.
Suppose $M$ infinite sequences with equi-period $k$ whose terms are in the set $\{1, \ldots, n\}$ can be chosen such that no two chosen sequences are equivalent to each other. Determine the largest possible value of $M$ in terms of $n$ and $k$.
1954 Moscow Mathematical Olympiad, 283
Consider five segments $AB_1, AB_2, AB_3, AB_4, AB_5$. From each point $B_i$ there can exit either $5$ segments or no segments at all, so that the endpoints of any two segments of the resulting graph (system of segments) do not coincide. Can the number of free endpoints of the segments thus constructed be equal to $1001$? (A free endpoint is an endpoint from which no segment begins.)
2006 Macedonia National Olympiad, 1
A natural number is written on the blackboard. In each step, we erase the units digit and add four times the erased digit to the remaining number, and write the result on the blackboard instead of the initial number. Starting with the number $13^{2006}$, is it possible to obtain the number $2006^{13}$ by repeating this step finitely many times?
2007 International Zhautykov Olympiad, 2
The set of positive nonzero real numbers are partitioned into three mutually disjoint non-empty subsets $(A\cup B\cup C)$.
a) show that there exists a triangle of side-lengths $a,b,c$, such that $a\in A, b\in B, c\in C$.
b) does it always happen that there exists a right triangle with the above property ?
JOM 2015 Shortlist, C8
Let $a$ be a permutation on $\{0,1,\ldots ,2015\}$ and $b,c$ are also permutations on $\{1,2,\ldots ,2015\}$. For all $x\in \{1,2,\ldots ,2015\}$, the following conditions are satisfied:
(i) $a(x)-a(x-1)\neq 1$,\\
(ii) if $b(x)\neq x$, then $c(x)=x$,\\
Prove that the number of $a$'s is equal to the number of ordered pairs of $(b,c)$.
2019 Dürer Math Competition (First Round), P2
a) 11 kayakers row on the Danube from Szentendre to Kopaszi-gát. They do not necessarily start at the same time, but we know that they all take the same route and that each kayaker rows with a constant speed. Whenever a kayaker passes another one, they do a high five. After they all arrive, everybody claims to have done precisely $10$ high fives in total. Show that it is possible for the kayakers to have rowed in such a way that this is true.
b) At a different occasion $13$ kayakers rowed in the same manner; now after arrival everybody claims to have done precisely$ 6$ high fives. Prove that at least one kayaker has miscounted.
2019 LMT Spring, Individual
[b]p1.[/b] Compute $2020 \cdot \left( 2^{(0\cdot1)} + 9 - \frac{(20^1)}{8}\right)$.
[b]p2.[/b] Nathan has five distinct shirts, three distinct pairs of pants, and four distinct pairs of shoes. If an “outfit” has a shirt, pair of pants, and a pair of shoes, how many distinct outfits can Nathan make?
[b]p3.[/b] Let $ABCD$ be a rhombus such that $\vartriangle ABD$ and $\vartriangle BCD$ are equilateral triangles. Find the angle measure of $\angle ACD$ in degrees.
[b]p4.[/b] Find the units digit of $2019^{2019}$.
[b]p5.[/b] Determine the number of ways to color the four vertices of a square red, white, or blue if two colorings that can be turned into each other by rotations and reflections are considered the same.
[b]p6.[/b] Kathy rolls two fair dice numbered from $1$ to $6$. At least one of them comes up as a $4$ or $5$. Compute the probability that the sumof the numbers of the two dice is at least $10$.
[b]p7.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $20x +19y = 2019$.
[b]p8.[/b] Let $p$ be a prime number such that both $2p -1$ and $10p -1$ are prime numbers. Find the sum of all possible values of $p$.
[b]p9.[/b] In a square $ABCD$ with side length $10$, let $E$ be the intersection of $AC$ and $BD$. There is a circle inscribed in triangle $ABE$ with radius $r$ and a circle circumscribed around triangle $ABE$ with radius $R$. Compute $R -r$ .
[b]p10.[/b] The fraction $\frac{13}{37 \cdot 77}$ can be written as a repeating decimal $0.a_1a_2...a_{n-1}a_n$ with $n$ digits in its shortest repeating decimal representation. Find $a_1 +a_2 +...+a_{n-1}+a_n$.
[b]p11.[/b] Let point $E$ be the midpoint of segment $AB$ of length $12$. Linda the ant is sitting at $A$. If there is a circle $O$ of radius $3$ centered at $E$, compute the length of the shortest path Linda can take from $A$ to $B$ if she can’t cross the circumference of $O$.
[b]p12.[/b] Euhan and Minjune are playing tennis. The first one to reach $25$ points wins. Every point ends with Euhan calling the ball in or out. If the ball is called in, Minjune receives a point. If the ball is called out, Euhan receives a point. Euhan always makes the right call when the ball is out. However, he has a $\frac34$ chance of making the right call when the ball is in, meaning that he has a $\frac14$ chance of calling a ball out when it is in. The probability that the ball is in is equal to the probability that the ball is out. If Euhan won, determine the expected number of wrong callsmade by Euhan.
[b]p13.[/b] Find the number of subsets of $\{1, 2, 3, 4, 5, 6,7\}$ which contain four consecutive numbers.
[b]p14.[/b] Ezra and Richard are playing a game which consists of a series of rounds. In each round, one of either Ezra or Richard receives a point. When one of either Ezra or Richard has three more points than the other, he is declared the winner. Find the number of games which last eleven rounds. Two games are considered distinct if there exists a round in which the two games had different outcomes.
[b]p15.[/b] There are $10$ distinct subway lines in Boston, each of which consists of a path of stations. Using any $9$ lines, any pair of stations are connected. However, among any $8$ lines there exists a pair of stations that cannot be reached from one another. It happens that the number of stations is minimized so this property is satisfied. What is the average number of stations that each line passes through?
[b]p16.[/b] There exist positive integers $k$ and $3\nmid m$ for which
$$1 -\frac12 + \frac13 - \frac14 +...+ \frac{1}{53}-\frac{1}{54}+\frac{1}{55}=\frac{3^k \times m}{28\times 29\times ... \times 54\times 55}.$$
Find the value $k$.
[b]p17.[/b] Geronimo the giraffe is removing pellets from a box without replacement. There are $5$ red pellets, $10$ blue pellets, and $15$ white pellets. Determine the probability that all of the red pellets are removed before all the blue pellets and before all of the white pellets are removed.
[b]p18.[/b] Find the remainder when $$70! \left( \frac{1}{4 \times 67}+ \frac{1}{5 \times 66}+...+ \frac{1}{66\times 5}+ \frac{1}{67\times 4} \right)$$ is divided by $71$.
[b]p19.[/b] Let $A_1A_2...A_{12}$ be the regular dodecagon. Let $X$ be the intersection of $A_1A_2$ and $A_5A_{11}$. Given that $X A_2 \cdot A_1A_2 = 10$, find the area of dodecagon.
[b]p20.[/b] Evaluate the following infinite series: $$\sum^{\infty}_{n=1}\sum^{\infty}_{m=1} \frac{n \sec^2m -m \tan^2 n}{3^{m+n}(m+n)}$$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1996 Vietnam Team Selection Test, 2
There are some people in a meeting; each doesn't know at least 56 others, and for any pair, there exist a third one who knows both of them. Can the number of people be 65?
2019 Harvard-MIT Mathematics Tournament, 6
A point $P$ lies at the center of square $ABCD$. A sequence of points $\{P_n\}$ is determined by $P_0 = P$, and given point $P_i$, point $P_{i+1}$ is obtained by reflecting $P_i$ over one of the four lines $AB$, $BC$, $CD$, $DA$, chosen uniformly at random and independently for each $i$. What is the probability that $P_8 = P$?
2002 All-Russian Olympiad, 4
A hydra consists of several heads and several necks, where each neck joins two heads. When a hydra's head $A$ is hit by a sword, all the necks from head $A$ disappear, but new necks grow up to connect head $A$ to all the heads which weren't connected to $A$. Heracle defeats a hydra by cutting it into two parts which are no joined. Find the minimum $N$ for which Heracle can defeat any hydra with $100$ necks by no more than $N$ hits.
1999 Polish MO Finals, 2
Given $101$ distinct non-negative integers less than $5050$ show that one can choose four $a, b, c, d$ such that $a + b - c - d$ is a multiple of $5050$
2014 Germany Team Selection Test, 1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
2012 India Regional Mathematical Olympiad, 6
Let $S$ be the set $\{1, 2, ..., 10\}$. Let $A$ be a subset of $S$.
We arrange the elements of $A$ in increasing order, that is, $A = \{a_1, a_2, ...., a_k\}$ with $a_1 < a_2 < ... < a_k$.
Define [i]WSUM [/i] for this subset as $3(a_1 + a_3 +..) + 2(a_2 + a_4 +...)$ where the first term contains the odd numbered terms and the second the even numbered terms.
(For example, if $A = \{2, 5, 7, 8\}$, [i]WSUM [/i] is $3(2 + 7) + 2(5 + 8)$.)
Find the sum of [i]WSUMs[/i] over all the subsets of S.
(Assume that WSUM for the null set is $0$.)
2018 Nordic, 1
Let $k$ be a positive integer and $P$ a point in the plane. We wish to draw lines, none passing through $P$, in such a way that any ray starting from $P$ intersects at least $k$ of these lines. Determine the smallest number of lines needed.
1993 Baltic Way, 14
A square is divided into $16$ equal squares, obtaining the set of $25$ different vertices. What is the least number of vertices one must remove from this set, so that no $4$ points of the remaining set are the vertices of any square with sides parallel to the sides of the initial square?
2018 Serbia Team Selection Test, 6
For any positive integer $n$, define
$$c_n=\min_{(z_1,z_2,...,z_n)\in\{-1,1\}^n} |z_1\cdot 1^{2018} + z_2\cdot 2^{2018} + ... + z_n\cdot n^{2018}|.$$
Is the sequence $(c_n)_{n\in\mathbb{Z}^+}$ bounded?
2010 Indonesia TST, 4
For each positive integer $ n$, define $ f(n)$ as the number of digits $ 0$ in its decimal representation. For example, $ f(2)\equal{}0$, $ f(2009)\equal{}2$, etc. Please, calculate \[ S\equal{}\sum_{k\equal{}1}^{n}2^{f(k)},\] for $ n\equal{}9,999,999,999$.
[i]Yudi Satria, Jakarta[/i]
2001 Federal Math Competition of S&M, Problem 2
Given are $5$ segments, such that from any three of them one can form a triangle. Prove that from some three of them one can form an acute-angled triangle.
2007 APMO, 5
A regular $ (5 \times 5)$-array of lights is defective, so that toggling the switch for one light causes each adjacent light in the same row and in the same column as well as the light itself to change state, from on to off, or from off to on. Initially all the lights are switched off. After a certain number of toggles, exactly one light is switched on. Find all the possible positions of this light.
2024 JHMT HS, 6
Compute the number of nonempty subsets $S$ of $\{ 1,2,3,4,5,6,7,8,9,10 \}$ such that the median of $S$ is an element of $S$.
2021 OMMock - Mexico National Olympiad Mock Exam, 5
Consider a chessboard that is infinite in all directions. Alex the T-rex wishes to place a positive integer in each square in such a way that:
[list]
[*] No two numbers are equal.
[*] If a number $m$ is placed on square $C$, then at least $k$ of the squares orthogonally adjacent to $C$ have a multiple of $m$ written on them.
[/list]
What is the greatest value of $k$ for which this is possible?
1979 All Soviet Union Mathematical Olympiad, 283
Given $n$ points (in sequence)$ A_1, A_2, ... , A_n$ on a line. All the segments $A_1A_2$, $A_2A_3$,$ ...$, $A_{n-1}A_n$ are shorter than $1$. We need to mark $(k-1)$ points so that the difference of every two segments, with the ends in the marked points, is shorter than $1$. Prove that it is possible
a) for $k=3$,
b) for every $k$ less than $(n-1)$.