This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2015 QEDMO 14th, 5

Let $D$ be a regular dodecagon in the plane. How many squares are there in the plane at least two vertices in common with the vertices of $D$?

2020 BMT Fall, 5

Let $P$ be the probability that the product of $2020$ real numbers chosen independently and uniformly at random from the interval $[-1, 2]$ is positive. The value of $2P - 1$ can be written in the form $\left(\frac{m}{n} \right)^b$, where $m$, $n$ and $b$ are positive integers such that $m$ and $n$ are relatively prime and $b$ is as large as possible. Compute $m + n + b$.

2016 BMT Spring, 13

Consider an urn containing $51$ white and $50$ black balls. Every turn, we randomly pick a ball, record the color of the ball, and then we put the ball back into the urn. We stop picking when we have recorded $n$ black balls, where $n$ is an integer randomly chosen from $\{1, 2,... , 100\}$. What is the expected number of turns?

2013 Germany Team Selection Test, 3

Let $n \geq 1$ be an integer. What is the maximum number of disjoint pairs of elements of the set $\{ 1,2,\ldots , n \}$ such that the sums of the different pairs are different integers not exceeding $n$?

2023 SAFEST Olympiad, 5

In the plane, $2022$ points are chosen such that no three points lie on the same line. Each of the points is coloured red or blue such that each triangle formed by three distinct red points contains at least one blue point. What is the largest possible number of red points? [i]Proposed by Art Waeterschoot, Belgium[/i]

1995 Portugal MO, 5

Rosa dos Ventos, Aurora Boreal and Manuela do Norte organized a competition between them last weekend, consisting of several athletics events. The winner in each test obtained $x$ points, the second placed $y$ points and the third placed $z$ points ($x,y,z \in N$ and $x >y>z$). The final result of the competition, obtained by adding up the scores in each event, was Rosa had $22$ points, Manuela had $9$ points, Aurora had $9 $ points. In how many tests did they compete and who came second in the high jump knowing that the Manuela won the $100$ meters and no one gave up in any race? [hide=official wording]Rosa dos Ventos, a Aurora Boreal e a Manuela do Norte organizaram no passado fim de semana uma competi¸c˜ao entre elas, consistindo em v´arias provas de atletismo. A vencedora em cada prova obteve x pontos, a segunda classificada y pontos e a terceira classificada z pontos (x,y,z ∈ IN e x >y>z). O resultado final da competi¸c˜ao, obtido por soma das pontua¸c˜oes em cada prova, foi Rosa 22 pontos Manuela 9 pontos Aurora 9 pontos Em quantas provas competiram e quem ficou em segundo lugar no salto em altura sabendo que a Manuela ganhou os 100 metros e que ningu´em desistiu em nenhuma prova?[/hide]

1997 Tournament Of Towns, (555) 5

Each face of a cube is of the same size as each square of a chessboard. The cube is coloured black and white, placed on one of the squares of the chessboard and rolled so that each square of the chessboard is visited exactly once. Can this be done in such a way that the colour of the visited square and the colour of the bottom face of the cube are always the same? (A Shapovalov)

1992 China National Olympiad, 2

Find the maximum possible number of edges of a simple graph with $8$ vertices and without any quadrilateral. (a simple graph is an undirected graph that has no loops (edges connected at both ends to the same vertex) and no more than one edge between any two different vertices.)

1974 Kurschak Competition, 2

$S_n$ is a square side $\frac{1}{n}$. Find the smallest $k$ such that the squares $S_1, S_2,S_3, ...$ can be put into a square side $k$ without overlapping.

2018 Costa Rica - Final Round, F2

Consider $f (n, m)$ the number of finite sequences of $ 1$'s and $0$'s such that each sequence that starts at $0$, has exactly n $0$'s and $m$ $ 1$'s, and there are not three consecutive $0$'s or three $ 1$'s. Show that if $m, n> 1$, then $$f (n, m) = f (n-1, m-1) + f (n-1, m-2) + f (n-2, m-1) + f (n-2, m-2)$$

2021 Turkey MO (2nd round), 6

In a school, there are 2021 students, each having exactly $k$ friends. There aren't three students such that all three are friends with each other. What is the maximum possible value of $k$?

2010 Indonesia Juniors, day 1

p1. A fraction is called Toba-$n$ if the fraction has a numerator of $1$ and the denominator of $n$. If $A$ is the sum of all the fractions of Toba-$101$, Toba-$102$, Toba-$103$, to Toba-$200$, show that $\frac{7}{12} <A <\frac56$. p2. If $a, b$, and $c$ satisfy the system of equations $$ \frac{ab}{a+b}=\frac12$$ $$\frac{bc}{b+c}=\frac13 $$ $$ \frac{ac}{a+c}=\frac17 $$ Determine the value of $(a- c)^b$. p3. Given triangle $ABC$. If point $M$ is located at the midpoint of $AC$, point $N$ is located at the midpoint of $BC$, and the point $P$ is any point on $AB$. Determine the area of ​​the quadrilateral $PMCN$. [img]https://cdn.artofproblemsolving.com/attachments/4/d/175e2d55f889b9dd2d8f89b8bae6c986d87911.png[/img] p4. Given the rule of motion of a particle on a flat plane $xy$ as following: $N: (m, n)\to (m + 1, n + 1)$ $T: (m, n)\to (m + 1, n - 1)$, where $m$ and $n$ are integers. How many different tracks are there from $(0, 3)$ to $(7, 2)$ by using the above rules ? p5. Andra and Dedi played “SUPER-AS”. The rules of this game as following. Players take turns picking marbles from a can containing $30$ marbles. For each take, the player can take the least a minimum of $ 1$ and a maximum of $6$ marbles. The player who picks up the the last marbels is declared the winner. If Andra starts the game by taking $3$ marbles first, determine how many marbles should be taken by Dedi and what is the next strategy to take so that Dedi can be the winner.

2017 BmMT, Ind. Tie

[b]p1.[/b] Consider a $4 \times 4$ lattice on the coordinate plane. At $(0,0)$ is Mori’s house, and at $(4,4)$ is Mori’s workplace. Every morning, Mori goes to work by choosing a path going up and right along the roads on the lattice. Recently, the intersection at $(2, 2)$ was closed. How many ways are there now for Mori to go to work? [b]p2.[/b] Given two integers, define an operation $*$ such that if a and b are integers, then a $*$ b is an integer. The operation $*$ has the following properties: 1. $a * a$ = 0 for all integers $a$. 2. $(ka + b) * a = b * a$ for integers $a, b, k$. 3. $0 \le b * a < a$. 4. If $0 \le b < a$, then $b * a = b$. Find $2017 * 16$. [b]p3.[/b] Let $ABC$ be a triangle with side lengths $AB = 13$, $BC = 14$, $CA = 15$. Let $A'$, $B'$, $C'$, be the midpoints of $BC$, $CA$, and $AB$, respectively. What is the ratio of the area of triangle $ABC$ to the area of triangle $A'B'C'$? [b]p4.[/b] In a strange world, each orange has a label, a number from $0$ to $10$ inclusive, and there are an infinite number of oranges of each label. Oranges with the same label are considered indistinguishable. Sally has 3 boxes, and randomly puts oranges in her boxes such that (a) If she puts an orange labelled a in a box (where a is any number from 0 to 10), she cannot put any other oranges labelled a in that box. (b) If any two boxes contain an orange that have the same labelling, the third box must also contain an orange with that labelling. (c) The three boxes collectively contain all types of oranges (oranges of any label). The number of possible ways Sally can put oranges in her $3$ boxes is $N$, which can be written as the product of primes: $$p_1^{e_1} p_2^{e_2}... p_k^{e_k}$$ where $p_1 \ne p_2 \ne p_3 ... \ne p_k$ and $p_i$ are all primes and $e_i$ are all positive integers. What is the sum $e_1 + e_2 + e_3 +...+ e_k$? [b]p5.[/b] Suppose I want to stack $2017$ identical boxes. After placing the first box, every subsequent box must either be placed on top of another one or begin a new stack to the right of the rightmost pile. How many different ways can I stack the boxes, if the order I stack them doesn’t matter? Express your answer as $$p_1^{e_1} p_2^{e_2}... p_n^{e_n}$$ where $p_1, p_2, p_3, ... , p_n$ are distinct primes and $e_i$ are all positive integers. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Lithuania National Olympiad, 4

Find the maximal cardinality $|S|$ of the subset $S \subset A=\{1, 2, 3, \dots, 9\}$ given that no two sums $a+b | a, b \in S, a \neq b$ are equal.

1999 Austrian-Polish Competition, 1

Find the number of $6$-tuples $(A_1,A_2,...,A_6)$ of subsets of $M = \{1,..., n\}$ (not necessarily different) such that each element of $M$ belongs to zero, three, or six of the subsets $A_1,...,A_6$.

2009 Indonesia TST, 1

2008 persons take part in a programming contest. In one round, the 2008 programmers are divided into two groups. Find the minimum number of groups such that every two programmers ever be in the same group.

2016 Grand Duchy of Lithuania, 2

During a school year $44$ competitions were held. Exactly $7$ students won in each of the competitions. For any two competitions, there exists exactly $1$ student who won in both competitions. Is it true that there exists a student who won all of the competitions?

2013 National Olympiad First Round, 4

The numbers $1,2,\dots, 49$ are written on unit squares of a $7\times 7$ chessboard such that consequtive numbers are on unit squares sharing a common edge. At most how many prime numbers can a row have? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 3 $

2016 Saint Petersburg Mathematical Olympiad, 4

$N> 4$ points move around the circle, each with a constant speed. For Any four of them have a moment in time when they all meet. Prove that is the moment when all the points meet.

2000 All-Russian Olympiad, 8

All points in a $100 \times 100$ array are colored in one of four colors red, green, blue or yellow in such a way that there are $25$ points of each color in each row and in any column. Prove that there are two rows and two columns such that their four intersection points are all in different colors.

2020 Latvia TST, 1.5

Given a $6\times 6$ square consisting of unit squares, denote its rows and columns from $1$ to $6$. Figure [i]p-horse[/i] can move from square $(x; y)$ to $(x’; y’)$ if and only if both $x + x’$ and $y + y’$ are primes. At the start the [i]p-horse[/i] is located in one of the unit squares. $a)$ Can the [i]p-horse[/i] visit every unit square exactly once? $b$) Can the [i]p-horse[/i] visit every unit square exactly once and with the last move return to the initial starting position?

the 9th XMO, 4

One hundred million cities lie on Planet MO. Initially, there are no air routes between any two cities. Now an airline company comes. It plans to establish $5050$ two-way routes, each route connects two different cities, and no two routes connect the same two cities. The "degree" of a city is defined to be the number of routes departing from that city. The "benefit" of a route is the product of the "degrees" of the two cities it connects. Find the maximum possible value of the sum of the benefits of these $5050$ routes.

2009 USA Team Selection Test, 1

Let $m$ and $n$ be positive integers. Mr. Fat has a set $S$ containing every rectangular tile with integer side lengths and area of a power of $2$. Mr. Fat also has a rectangle $R$ with dimensions $2^m \times 2^n$ and a $1 \times 1$ square removed from one of the corners. Mr. Fat wants to choose $m + n$ rectangles from $S$, with respective areas $2^0, 2^1, \ldots, 2^{m + n - 1}$, and then tile $R$ with the chosen rectangles. Prove that this can be done in at most $(m + n)!$ ways. [i]Palmer Mebane.[/i]

1995 Tournament Of Towns, (450) 6

Can it happen that $6$ parallelepipeds, no two of which have common points, are placed in space so that there is a point outside of them from which no vertex of a parallelepiped is visible? (The parallelepipeds are not transparent.) (V Proizvolov)

2018 Canadian Mathematical Olympiad Qualification, 8

Let $n$ and $k$ be positive integers with $1 \leq k \leq n$. A set of cards numbered $1$ to $n$ are arranged randomly in a row from left to right. A person alternates between performing the following moves: [list=a] [*] The leftmost card in the row is moved $k-1$ positions to the right while the cards in positions $2$ through $k$ are each moved one place to the left. [*] The rightmost card in the row is moved $k-1$ positions to the left while the cards in positions $n-k+1$ through $n-1$ are each moved one place to the right. [/list] Determine the probability that after some number of moves the cards end up in order from $1$ to $n$, left to right.