This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2024 Indonesia MO, 5

Each integer is colored with exactly one of the following colors: red, blue, or orange, and all three colors are used in the coloring. The coloring also satisfies the following properties: 1. The sum of a red number and an orange number results in a blue-colored number, 2. The sum of an orange and blue number results in an orange-colored number; 3. The sum of a blue number and a red number results in a red-colored number. (a) Prove that $0$ and $1$ must have distinct colors. (b) Determine all possible colorings of the integers which also satisfy the properties stated above.

2021 Korea - Final Round, P3

Let $P$ be a set of people. For two people $A$ and $B$, if $A$ knows $B$, $B$ also knows $A$. Each person in $P$ knows $2$ or less people in the set. $S$, a subset of $P$ with $k$ people, is called [i][b]k-independent set[/b][/i] of $P$ if any two people in $S$ don’t know each other. $X_1, X_2, …, X_{4041}$ are [i][b]2021-independent set[/b][/i]s of $P$ (not necessarily distinct). Show that there exists a [i][b]2021-independent set[/b][/i] of $P$, $\{v_1, v_2, …, v_{2021}\}$, which satisfies the following condition: [center] For some integer $1 \le i_1 < i_2 < \cdots < i_{2021} \leq 4041$, $v_1 \in X_{i_1}, v_2 \in X_{i_2}, \ldots, v_{2021} \in X_{i_{2021}}$ [/center] [hide=Graph Wording] Thanks to Evan Chen, here's a graph wording of the problem :) Let $G$ be a finite simple graph with maximum degree at most $2$. Let $X_1, X_2, \ldots, X_{4041}$ be independent sets of size $2021$ [i](not necessarily distinct)[/i]. Prove that there exists another independent set $\{v_1, v_2, \ldots, v_{2021}\}$ of size $2021$ and indices $1 \le t_1 < t_2 < \cdots < t_{2021} \le 4041$ such that $v_i \in X_{t_i}$ for all $i$. [/hide]

2020 CHMMC Winter (2020-21), 5

Suppose that a professor has $n \ge 4$ students. Let $P$ denote the set of all ordered pairs $(n, k)$ such that the number of ways for the professor to choose one pair of students equals the number of ways for the professor to choose $k > 1$ pairs of students. For each such ordered pair $(n, k) \in P$, consider the sum $n+k=s$. Find the sum of all $s$ over all ordered pairs $(n, k)$ in $P$. [i]If the same value of $s$ appears in multiple distinct elements $(n, k)$ in $P$, count this value multiple times.[/i]

2008 Tuymaada Olympiad, 1

Portraits of famous scientists hang on a wall. The scientists lived between 1600 and 2008, and none of them lived longer than 80 years. Vasya multiplied the years of birth of these scientists, and Petya multiplied the years of their death. Petya's result is exactly $ 5\over 4$ times greater than Vasya's result. What minimum number of portraits can be on the wall? [i]Author: V. Frank[/i]

2020 USA TSTST, 5

Let $\mathbb{N}^2$ denote the set of ordered pairs of positive integers. A finite subset $S$ of $\mathbb{N}^2$ is [i]stable[/i] if whenever $(x,y)$ is in $S$, then so are all points $(x',y')$ of $\mathbb{N}^2$ with both $x'\leq x$ and $y'\leq y$. Prove that if $S$ is a stable set, then among all stable subsets of $S$ (including the empty set and $S$ itself), at least half of them have an even number of elements. [i]Ashwin Sah and Mehtaab Sawhney[/i]

2008 ITAMO, 2

A square $ (n \minus{} 1) \times (n \minus{} 1)$ is divided into $ (n \minus{} 1)^2$ unit squares in the usual manner. Each of the $ n^2$ vertices of these squares is to be coloured red or blue. Find the number of different colourings such that each unit square has exactly two red vertices. (Two colouring schemse are regarded as different if at least one vertex is coloured differently in the two schemes.)

2012 Greece National Olympiad, 4

The following isosceles trapezoid consists of equal equilateral triangles with side length $1$. The side $A_1E$ has length $3$ while the larger base $A_1A_n$ has length $n-1$. Starting from the point $A_1$ we move along the segments which are oriented to the right and up(obliquely right or left). Calculate (in terms of $n$ or not) the number of all possible paths we can follow, in order to arrive at points $B,\Gamma,\Delta, E$, if $n$ is an integer greater than $3$. [color=#00CCA7][Need image][/color]

1978 IMO Shortlist, 1

The set $M = \{1, 2, . . . , 2n\}$ is partitioned into $k$ nonintersecting subsets $M_1,M_2, \dots, M_k,$ where $n \ge k^3 + k.$ Prove that there exist even numbers $2j_1, 2j_2, \dots, 2j_{k+1}$ in $M$ that are in one and the same subset $M_i$ $(1 \le i \le k)$ such that the numbers $2j_1 - 1, 2j_2 - 1, \dots, 2j_{k+1} - 1$ are also in one and the same subset $M_j (1 \le j \le k).$

2017 Kürschák Competition, 3

An $n$ by $n$ table has an integer in each cell, such that no two cells within a row share the same number. Prove that it is possible to permute the elements within each row to obtain a table that has $n$ distinct numbers in each column.

LMT Guts Rounds, 2017

[u]Round 5[/u] [b]p13.[/b] Two closed disks of radius $\sqrt2$ are drawn centered at the points $(1,0)$ and $(-1, 0)$. Let P be the region belonging to both disks. Two congruent non-intersecting open disks of radius $r$ have all of their points in $P$ . Find the maximum possible value of $r$ . [b]p14.[/b] A rectangle has positive integer side lengths. The sum of the numerical values of its perimeter and area is $2017$. Find the perimeter of the rectangle. [b]p15.[/b] Find all ordered triples of real numbers $(a,b,c)$ which satisfy $$a +b +c = 6$$ $$a \cdot (b +c) = 6$$ $$(a +b) \cdot c = 6$$ [u]Round 6[/u] [b]p16.[/b] A four digit positive integer is called confused if it is written using the digits $2$, $0$, $1$, and $7$ in some order, each exactly one. For example, the numbers $7210$ and $2017$ are confused. Find the sum of all confused numbers. [b]p17.[/b] Suppose $\vartriangle ABC$ is a right triangle with a right angle at $A$. Let $D$ be a point on segment $BC$ such that $\angle BAD = \angle CAD$. Suppose that $AB = 20$ and $AC = 17$. Compute $AD$. [b]p18.[/b] Let $x$ be a real number. Find the minimum possible positive value of $\frac{|x -20|+|x -17|}{x}$. [u]Round 7[/u] [b]p19.[/b] Find the sum of all real numbers $0 < x < 1$ that satisfy $\{2017x\} = \{x\}$. [b]p20.[/b] Let $a_1,a_2, ,,, ,a_{10}$ be real numbers which sum to $20$ and satisfy $\{a_i\} <0.5$ for $1 \le i\le 10$. Find the sum of all possible values of $\sum_{ 1 \le i <j\le 10} \lfloor a_i +a_j \rfloor .$ Here, $\lfloor x \rfloor$ denotes the greatest integer $x_0$ such that $x_0 \le x$ and $\{x\} =x -\lfloor x \rfloor$. [b]p21.[/b] Compute the remainder when $20^{2017}$ is divided by $17$. [u]Round 8[/u] [b]p22.[/b] Let $\vartriangle ABC$ be a triangle with a right angle at $B$. Additionally, letM be the midpoint of $AC$. Suppose the circumcircle of $\vartriangle BCM$ intersects segment $AB$ at a point $P \ne B$. If $CP = 20$ and $BP = 17$, compute $AC$. [b]p23.[/b] Two vertices on a cube are called neighbors if they are distinct endpoints of the same edge. On a cube, how many ways can a nonempty subset $S$ of the vertices be chosen such that for any vertex $v \in S$, at least two of the three neighbors of $v$ are also in $S$? Reflections and rotations are considered distinct. [b]p24.[/b] Let $x$ be a real number such that $x +\sqrt[4]{5-x^4}=2$. Find all possible values of $x\sqrt[4]{5-x^4}$. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3158491p28715220]here[/url].and 9-12 [url=https://artofproblemsolving.com/community/c3h3162362p28764144]here[/url] Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Tournament of Towns, 6

Several distinct real numbers are written on a blackboard. Peter wants to make an expression such that its values are exactly these numbers. To make such an expression, he may use any real numbers, brackets, and usual signs $+$ , $-$ and $\times$. He may also use a special sign $\pm$: computing the values of the resulting expression, he chooses values $+$ or $-$ for every $\pm$ in all possible combinations. For instance, the expression $5 \pm 1$ results in $\{4, 6 \}$, and $(2 \pm 0.5) \pm 0.5$ results in $\{1, 2, 3 \}$. Can Pete construct such an expression: $a)$ If the numbers on the blackboard are $1, 2, 4$; $b)$ For any collection of $100$ distinct real numbers on a blackboard?

1997 Israel National Olympiad, 2

We are given a balance with two bowls and a number of weights. (a) Give an example of four integer weights using which one can measure any weight of $1,2,...,40$ grams. (b) Are there four weights using which one can measure any weight of $1,2,...,50$ grams?

2015 China Western Mathematical Olympiad, 4

For $100$ straight lines on a plane, let $T$ be the set of all right-angled triangles bounded by some $3$ lines. Determine, with proof, the maximum value of $|T|$.

2014 Postal Coaching, 2

Let $A=\{1,2,3,\ldots,40\}$. Find the least positive integer $k$ for which it is possible to partition $A$ into $k$ disjoint subsets with the property that if $a,b,c$ (not necessarily distinct) are in the same subset, then $a\ne b+c$.

1998 IMO, 2

In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]

2023 Saint Petersburg Mathematical Olympiad, 6

There are several gentlemen in the meeting of the Diogenes Club, some of which are friends with each other (friendship is mutual). Let's name a participant unsociable if he has exactly one friend among those present at the meeting. By the club rules, the only friend of any unsociable member can leave the meeting (gentlemen leave the meeting one at a time). The purpose of the meeting is to achieve a situation in which that there are no friends left among the participants. Prove that if the goal is achievable, then the number of participants remaining at the meeting does not depend on who left and in what order.

2022 Moldova Team Selection Test, 9

Let $n$ be a positive integer. A grid of dimensions $n \times n$ is divided in $n^2$ $1 \times 1$ squares. Every segment of length $1$ (side of a square) from this grid is coloured in blue or red. The number of red segments is not greater than $n^2$. Find all positive integers $n$, for which the grid always will cointain at least one $1 \times 1$ square which has at least three blue sides.

2020 Philippine MO, 1

A [i]T-tetromino[/i] is formed by adjoining three unit squares to form a $1 \times 3$ rectangle, and adjoining on top of the middle square a fourth unit square. Determine the least number of unit squares that must be removed from a $202 \times 202$ grid so that it can be tiled using T-tetrominoes.

2016 China Team Selection Test, 5

Let $S$ be a finite set of points on a plane, where no three points are collinear, and the convex hull of $S$, $\Omega$, is a $2016-$gon $A_1A_2\ldots A_{2016}$. Every point on $S$ is labelled one of the four numbers $\pm 1,\pm 2$, such that for $i=1,2,\ldots , 1008,$ the numbers labelled on points $A_i$ and $A_{i+1008}$ are the negative of each other. Draw triangles whose vertices are in $S$, such that any two triangles do not have any common interior points, and the union of these triangles is $\Omega$. Prove that there must exist a triangle, where the numbers labelled on some two of its vertices are the negative of each other.

2024 Malaysian IMO Training Camp, 2

The sequence $1, 2, \dots, 2023, 2024$ is written on a whiteboard. Every second, Megavan chooses two integers $a$ and $b$, and four consecutive numbers on the whiteboard. Then counting from the left, he adds $a$ to the 1st and 3rd of those numbers, and adds $b$ to the 2nd and 4th of those numbers. Can he achieve the sequence $2024, 2023, \dots, 2, 1$ in a finite number of moves? [i](Proposed by Avan Lim Zenn Ee)[/i]

Kvant 2022, M2713

Given is a graph $G$ of $n+1$ vertices, which is constructed as follows: initially there is only one vertex $v$, and one a move we can add a vertex and connect it to exactly one among the previous vertices. The vertices have non-negative real weights such that $v$ has weight $0$ and each other vertex has a weight not exceeding the avarage weight of its neighbors, increased by $1$. Prove that no weight can exceed $n^2$.

2018 Hanoi Open Mathematics Competitions, 5

The center of a circle and nine randomly selected points on this circle are colored in red. Every pair of those points is connected by a line segment, and every point of intersection of two line segments inside the circle is colored in red. What is the largest possible number of red points? A. $235$ B. $245$ C. $250$ D. $220$ E. $265$

2025 Turkey Team Selection Test, 1

In a complete graph with $2025$ vertices, each edge has one of the colors $r_1$, $r_2$, or $r_3$. For each $i = 1,2,3$, if the $2025$ vertices can be divided into $a_i$ groups such that any two vertices connected by an edge of color $r_i$ are in different groups, find the minimum possible value of $a_1 + a_2 + a_3$.

2015 May Olympiad, 2

$6$ indistinguishable coins are given, $4$ are authentic, all of the same weight, and $2$ are false, one is more light than the real ones and the other one, heavier than the real ones. The two false ones together weigh same as two authentic coins. Find two authentic coins using a balance scale twice only by two plates, no weights. Clarification: A two-pan scale only reports if the left pan weighs more, equal or less that right.

2004 Italy TST, 2

Let $\mathcal{P}_0=A_0A_1\ldots A_{n-1}$ be a convex polygon such that $A_iA_{i+1}=2^{[i/2]}$ for $i=0, 1,\ldots ,n-1$ (where $A_n=A_0$). Define the sequence of polygons $\mathcal{P}_k=A_0^kA_1^k\ldots A_{n-1}^k$ as follows: $A_i^1$ is symmetric to $A_i$ with respect to $A_0$, $A_i^2$ is symmetric to $A_i^1$ with respect to $A_1^1$, $A_i^3$ is symmetric to $A_i^2$ with respect to $A_2^2$ and so on. Find the values of $n$ for which infinitely many polygons $\mathcal{P}_k$ coincide with $\mathcal{P}_0$.