This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 67

2008 Iran MO (3rd Round), 3

For each $ c\in\mathbb C$, let $ f_c(z,0)\equal{}z$, and $ f_c(z,n)\equal{}f_c(z,n\minus{}1)^2\plus{}c$ for $ n\geq1$. a) Prove that if $ |c|\leq\frac14$ then there is a neighborhood $ U$ of origin such that for each $ z\in U$ the sequence $ f_c(z,n),n\in\mathbb N$ is bounded. b) Prove that if $ c>\frac14$ is a real number there is a neighborhood $ U$ of origin such that for each $ z\in U$ the sequence $ f_c(z,n),n\in\mathbb N$ is unbounded.

1976 Miklós Schweitzer, 7

Let $ f_1,f_2,\dots,f_n$ be regular functions on a domain of the complex plane, linearly independent over the complex field. Prove that the functions $ f_i\overline{f}_k, \;1 \leq i,k \leq n$, are also linearly independent. [i]L. Lempert[/i]

1949 Miklós Schweitzer, 7

Find the complex numbers $ z$ for which the series \[ 1 \plus{} \frac {z}{2!} \plus{} \frac {z(z \plus{} 1)}{3!} \plus{} \frac {z(z \plus{} 1)(z \plus{} 2)}{4!} \plus{} \cdots \plus{} \frac {z(z \plus{} 1)\cdots(z \plus{} n)}{(n \plus{} 2)!} \plus{} \cdots\] converges and find its sum.

1996 Miklós Schweitzer, 7

Construct a holomorphic function $f(z) = \sum \limits_{n = 0} ^ \infty a_n z^n$ ( | z | <1 ) in the unit circle that can be analytically continued to all points of the unit circle except one point, and for which the sequence $\{a_n\}$ has two limit points, $\infty$ and a finite value.

1997 VJIMC, Problem 2

Let $f:\mathbb C\to\mathbb C$ be a holomorphic function with the property that $|f(z)|=1$ for all $z\in\mathbb C$ such that $|z|=1$. Prove that there exists a $\theta\in\mathbb R$ and a $k\in\{0,1,2,\ldots\}$ such that $$f(z)=e^{i\theta}z^k$$for all $z\in\mathbb C$.

2003 SNSB Admission, 5

Let be an holomorphic function $ f:\mathbb{C}\longrightarrow\mathbb{C} $ having the property that $ |f(z)|\le e^{|\text{Im}(z)|} , $ for all complex numbers $ z. $ Prove that the restriction of any of its derivatives (of any order) to the real numbers is everywhere dominated by $ 1. $

1978 Miklós Schweitzer, 5

Suppose that $ R(z)= \sum_{n=-\infty}^{\infty} a_nz^n$ converges in a neighborhood of the unit circle $ \{ z : \;|z|=1\ \}$ in the complex plane, and $ R(z)=P(z) / Q(z)$ is a rational function in this neighborhood, where $ P$ and $ Q$ are polynomials of degree at most $ k$. Prove that there is a constant $ c$ independent of $ k$ such that \[ \sum_{n=-\infty} ^{\infty} |a_n| \leq ck^2 \max_{|z|=1} |R(z)|.\] [i]H. S. Shapiro, G. Somorjai[/i]

2013 IMC, 1

Let $\displaystyle{z}$ be a complex number with $\displaystyle{\left| {z + 1} \right| > 2}$. Prove that $\displaystyle{\left| {{z^3} + 1} \right| > 1}$. [i]Proposed by Walther Janous and Gerhard Kirchner, Innsbruck.[/i]

PEN Q Problems, 4

A prime $p$ has decimal digits $p_{n}p_{n-1} \cdots p_0$ with $p_{n}>1$. Show that the polynomial $p_{n}x^{n} + p_{n-1}x^{n-1}+\cdots+ p_{1}x + p_0$ cannot be represented as a product of two nonconstant polynomials with integer coefficients

2003 Miklós Schweitzer, 3

Let $Z=\{ z_1,\ldots, z_{n-1}\}$, $n\ge 2$, be a set of different complex numbers such that $Z$ contains the conjugate of any its element. a) Show that there exists a constant $C$, depending on $Z$, such that for any $\varepsilon\in (0,1)$ there exists an algebraic integer $x_0$ of degree $n$, whose algebraic conjugates $x_1, x_2, \ldots, x_{n-1}$ satisfy $|x_1-z_1|\le \varepsilon, \ldots, |x_{n-1}-z_{n-1}|\le \varepsilon$ and $|x_0|\le \frac{C}{\varepsilon}$. b) Show that there exists a set $Z=\{ z_1, \ldots, z_{n-1}\}$ and a positive number $c_n$ such that for any algebraic integer $x_0$ of degree $n$, whose algebraic conjugates satisfy $|x_1-z_1|\le \varepsilon,\ldots, |x_{n-1}-z_{n-1}|\le \varepsilon$, it also holds that $|x_0|>\frac{c_n}{\varepsilon}$. (translated by L. Erdős)

2009 Putnam, B4

Say that a polynomial with real coefficients in two variable, $ x,y,$ is [i]balanced[/i] if the average value of the polynomial on each circle centered at the origin is $ 0.$ The balanced polynomials of degree at most $ 2009$ form a vector space $ V$ over $ \mathbb{R}.$ Find the dimension of $ V.$

1991 Arnold's Trivium, 66

Solve the Dirichlet problem \[\Delta u=0\text{ for }x^2+y^2<1\] \[u=1\text{ for }x^2+y^2=1,\;y>0\] \[u=-1\text{ for }x^2+y^2=1,\;y<0\]

2010 Putnam, A3

Suppose that the function $h:\mathbb{R}^2\to\mathbb{R}$ has continuous partial derivatives and satisfies the equation \[h(x,y)=a\frac{\partial h}{\partial x}(x,y)+b\frac{\partial h}{\partial y}(x,y)\] for some constants $a,b.$ Prove that if there is a constant $M$ such that $|h(x,y)|\le M$ for all $(x,y)$ in $\mathbb{R}^2,$ then $h$ is identically zero.

2020 Jozsef Wildt International Math Competition, W22

Prove that $$\operatorname{Re}\left(\operatorname{Li}_2\left(\frac{1-i\sqrt3}2\right)+\operatorname{Li}_2\left(\frac{\sqrt3-i}{2\sqrt3}\right)\right)=\frac{7\pi^2}{72}-\frac{\ln^23}8$$ where as usual $$\operatorname{Li}_2(z)=-\int^z_0\frac{\ln(1-t)}tdt,z\in\mathbb C\setminus[1,\infty)$$ [i]Proposed by Paolo Perfetti[/i]

2020 Miklós Schweitzer, 6

Does there exist an entire function $F \colon \mathbb{C}\to \mathbb{C}$ such that $F$ is not zero everywhere, $|F(z)|\leq e^{|z|}$ for all $z\in \mathbb{C}$, $|F(iy)|\leq 1$ for all $y\in \mathbb{R}$, and $F$ has infinitely many real roots.

2019 VJIMC, 4

Let $D=\{ z \in \mathbb{C} : \operatorname{Im}(z) >0 , \operatorname{Re}(z) >0 \} $. Let $n \geq 1 $ and let $a_1,a_2,\dots a_n \in D$ be distinct complex numbers. Define $$f(z)=z \cdot \prod_{j=1}^{n} \frac{z-a_j}{z-\overline{a_j}}$$ Prove that $f'$ has at least one root in $D$. [i]Proposed by Géza Kós (Lorand Eotvos University, Budapest)[/i]

1998 Miklós Schweitzer, 5

Let $K_1$ be an open disk in the complex plane whose boundary passes through the points -1 and +1, and let $K_2$ be the mirror image of $K_1$ across the real axis. Also, let $D_1 = K_1 \cap K_2$ , and let $D_2$ be the outside of $D_1$ . Suppose that the function $u_1( z )$ is harmonic on $D_1$ and continuous on its closure, $u_2(z)$ harmonic on $D_2$ (including $\infty$) and continuous on its closure, and $u_1(z) = u_2(z)$ at the common boundary of the domains $D_1$ and $D_2$ . Prove that if $u_1( x )\geq 0$ for all $-1 < x <1$, then $u_2 ( x )\geq 0$ for all $x>1$ and $x<-1$.

2005 Miklós Schweitzer, 9

prove that if $r_n$ is a rational function whose numerator and denominator have at most degrees $n$, then $$||r_n||_{1/2}+\left\|\frac{1}{r_n}\right\|_2\geq\frac{1}{2^{n-1}}$$ where $||\cdot||_a$ denotes the supremum over a circle of radius $a$ around the origin.

PEN P Problems, 5

Show that any positive rational number can be represented as the sum of three positive rational cubes.

2005 VJIMC, Problem 1

Let $S_0=\{z\in\mathbb C:|z|=1,z\ne-1\}$ and $f(z)=\frac{\operatorname{Im}z}{1+\operatorname{Re}z}$. Prove that $f$ is a bijection between $S_0$ and $\mathbb R$. Find $f^{-1}$.

2004 Miklós Schweitzer, 8

Prove that for any $0<\delta <2\pi$ there exists a number $m>1$ such that for any positive integer $n$ and unimodular complex numbers $z_1,\ldots, z_n$ with $z_1^v+\dots+z_n^v=0$ for all integer exponents $1\le v\le m$, any arc of length $\delta$ of the unit circle contains at least one of the numbers $z_1,\ldots, z_n$.

2009 Romania Team Selection Test, 3

Given an integer $n\geq 2$ and a closed unit disc, evaluate the maximum of the product of the lengths of all $\frac{n(n-1)}{2}$ segments determined by $n$ points in that disc.

2008 Iran MO (3rd Round), 2

Let $ g,f: \mathbb C\longrightarrow\mathbb C$ be two continuous functions such that for each $ z\neq 0$, $ g(z)\equal{}f(\frac1z)$. Prove that there is a $ z\in\mathbb C$ such that $ f(\frac1z)\equal{}f(\minus{}\bar z)$

1998 Miklós Schweitzer, 3

Let p be a prime and $f: Z_p \to C$ a complex valued function defined on a cyclic group of order p. Define the Fourier transform of f by the formula: $$\hat f (k) = \sum_{l = 0}^{p-1} f (l) e^{i2\pi kl / p}\qquad(k \in Z_p)$$ Show that if the combined number of zeros of f and $\hat f$ is at least p, then f is identically zero. related: [url]https://artofproblemsolving.com/community/c7h22594[/url]

2023 Miklós Schweitzer, 8

Let $q{}$ be an arbitrary polynomial with complex coefficients which is not identically $0$ and $\Gamma_q =\{z : |q(z)| = 1\}$ be its contour line. Prove that for every point $z_0\in\Gamma_q$ there is a polynomial $p{}$ for which $|p(z_0)| = 1$ and $|p(z)|<1$ for any $z\in\Gamma_q\setminus\{z_0\}.$