This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2000 Croatia National Olympiad, Problem 1

Let $\mathcal P$ be the parabola $y^2=2px$, and let $T_0$ be a point on it. Point $T_0'$ is such that the midpoint of the segment $T_0T_0'$ lies on the axis of the parabola. For a variable point $T$ on $\mathcal P$, the perpendicular from $T_0'$ to the line $T_0T$ intersects the line through $T$ parallel to the axis of $\mathcal P$ at a point $T'$. Find the locus of $T'$.

KoMaL A Problems 2022/2023, A. 834

Let $A_1A_2\ldots A_8$ be a convex cyclic octagon, and for $i=1,2\ldots,8$ let $B_i=A_iA_{i+3}\cap A_{i+1}A_{i+4}$ (indices are meant modulo 8). Prove that points $B_1,\ldots, B_8$ lie on the same conic section.

2014 VJIMC, Problem 4

Let $P_1,P_2,P_3,P_4$ be the graphs of four quadratic polynomials drawn in the coordinate plane. Suppose that $P_1$ is tangent to $P_2$ at the point $q_2,P_2$ is tangent to $P_3$ at the point $q_3,P_3$ is tangent to $P_4$ at the point $q_4$, and $P_4$ is tangent to $P_1$ at the point $q_1$. Assume that all the points $q_1,q_2,q_3,q_4$ have distinct $x$-coordinates. Prove that $q_1,q_2,q_3,q_4$ lie on a graph of an at most quadratic polynomial.

2015 Belarus Team Selection Test, 1

A circle intersects a parabola at four distinct points. Let $M$ and $N$ be the midpoints of the arcs of the circle which are outside the parabola. Prove that the line $MN$ is perpendicular to the axis of the parabola. I. Voronovich