This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 32

2004 India IMO Training Camp, 3

Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$. (1) Prove that there exists an equilateral triangle whose vertices lie in different discs. (2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$. [i]Radu Gologan, Romania[/i] [hide="Remark"] The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url]. [/hide]

1987 China Team Selection Test, 2

A closed recticular polygon with 100 sides (may be concave) is given such that it's vertices have integer coordinates, it's sides are parallel to the axis and all it's sides have odd length. Prove that it's area is odd.

1991 Denmark MO - Mohr Contest, 1

Tags: coordinates
Describe the amount of points $P(x, y)$ that are twice as far apart $A(3, 0)$ as to $0(0, 0)$.

2020 AMC 12/AHSME, 17

The vertices of a quadrilateral lie on the graph of $y = \ln x$, and the $x$-coordinates of these vertices are consecutive positive integers. The area of the quadrilateral is $\ln \frac{91}{90}$. What is the $x$-coordinate of the leftmost vertex? $\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 13$

1986 All Soviet Union Mathematical Olympiad, 422

Prove that it is impossible to draw a convex quadrangle, with one diagonal equal to doubled another, the angle between them $45$ degrees, on the coordinate plane, so, that all the vertices' coordinates would be integers.

2001 Nordic, 1

Let ${A}$ be a finite collection of squares in the coordinate plane such that the vertices of all squares that belong to ${A}$ are ${(m, n), (m + 1, n), (m, n + 1)}$, and ${(m + 1, n + 1)}$ for some integers ${m}$ and ${n}$. Show that there exists a subcollection ${B}$ of ${A}$ such that ${B}$ contains at least ${25 \% }$ of the squares in ${A}$, but no two of the squares in ${B}$ have a common vertex.

2019 Nigerian Senior MO Round 4, 3

An ant is moving on the cooridnate plane, starting form point $(0,-1)$ along a straight line until it reaches the $x$- axis at point $(x,0)$ where $x$ is a real number. After it turns $90^o$ to the left and moves again along a straight line until it reaches the $y$-axis . Then it again turns left and moves along a straight line until it reaches the $x$-axis, where it once more turns left by $90^o$ and moves along a straight line until it finally reached the $y$-axis. Can both the length of the ant's journey and distance between it's initial and final point be: (a) rational numbers ? (b) integers? Justify your answers PS. Collected [url=https://artofproblemsolving.com/community/c949609_2019_nigerian_senior_mo_round_4]here[/url]