This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 401

2008 ITAMO, 2

A square $ (n \minus{} 1) \times (n \minus{} 1)$ is divided into $ (n \minus{} 1)^2$ unit squares in the usual manner. Each of the $ n^2$ vertices of these squares is to be coloured red or blue. Find the number of different colourings such that each unit square has exactly two red vertices. (Two colouring schemse are regarded as different if at least one vertex is coloured differently in the two schemes.)

2011 CentroAmerican, 1

Consider a cube with a fly standing at each of its vertices. When a whistle blows, each fly moves to a vertex in the same face as the previous one but diagonally opposite to it. After the whistle blows, in how many ways can the flies change position so that there is no vertex with 2 or more flies?

1969 IMO Longlists, 45

Given $n>4$ points in the plane, no three collinear. Prove that there are at least $\frac{(n-3)(n-4)}{2}$ convex quadrilaterals with vertices amongst the $n$ points.

1979 IMO Shortlist, 9

Let $A$ and $E$ be opposite vertices of an octagon. A frog starts at vertex $A.$ From any vertex except $E$ it jumps to one of the two adjacent vertices. When it reaches $E$ it stops. Let $a_n$ be the number of distinct paths of exactly $n$ jumps ending at $E$. Prove that: \[ a_{2n-1}=0, \quad a_{2n}={(2+\sqrt2)^{n-1} - (2-\sqrt2)^{n-1} \over\sqrt2}. \]

2015 BAMO, 2

Members of a parliament participate in various committees. Each committee consists of at least $2$ people, and it is known that every two committees have at least one member in common. Prove that it is possible to give each member a colored hat (hats are available in black, white or red) so that every committee contains at least $2$ members with different hat colors.

1980 Austrian-Polish Competition, 4

Prove that $\sum \frac{1}{i_1i_2 \ldots i_k} = n$ is taken over all non-empty subsets $\left\{i_1,i_2, \ldots, i_k\right\}$ of $\left\{1,2,\ldots,n\right\}$. (The $k$ is not fixed, so we are summing over all the $2^n-1$ possible nonempty subsets.)

1989 IMO Longlists, 94

Let $ a_1 \geq a_2 \geq a_3 \in \mathbb{Z}^\plus{}$ be given and let N$ (a_1, a_2, a_3)$ be the number of solutions $ (x_1, x_2, x_3)$ of the equation \[ \sum^3_{k\equal{}1} \frac{a_k}{x_k} \equal{} 1.\] where $ x_1, x_2,$ and $ x_3$ are positive integers. Prove that \[ N(a_1, a_2, a_3) \leq 6 a_1 a_2 (3 \plus{} ln(2 a_1)).\]

1990 IMO Longlists, 3

The integer $ 9$ can be written as a sum of two consecutive integers: $ 9 \equal{} 4\plus{}5.$ Moreover, it can be written as a sum of (more than one) consecutive positive integers in exactly two ways: $ 9 \equal{} 4\plus{}5 \equal{} 2\plus{}3\plus{}4.$ Is there an integer that can be written as a sum of $ 1990$ consecutive integers and that can be written as a sum of (more than one) consecutive positive integers in exactly $ 1990$ ways?

2016 Irish Math Olympiad, 7

A rectangular array of positive integers has $4$ rows. The sum of the entries in each column is $20$. Within each row, all entries are distinct. What is the maximum possible number of columns?

1969 IMO, 5

Given $n>4$ points in the plane, no three collinear. Prove that there are at least $\frac{(n-3)(n-4)}{2}$ convex quadrilaterals with vertices amongst the $n$ points.

1997 IMO Shortlist, 1

In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers $ m$ and $ n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $ m$ and $ n$, lie along edges of the squares. Let $ S_1$ be the total area of the black part of the triangle and $ S_2$ be the total area of the white part. Let $ f(m,n) \equal{} | S_1 \minus{} S_2 |$. a) Calculate $ f(m,n)$ for all positive integers $ m$ and $ n$ which are either both even or both odd. b) Prove that $ f(m,n) \leq \frac 12 \max \{m,n \}$ for all $ m$ and $ n$. c) Show that there is no constant $ C\in\mathbb{R}$ such that $ f(m,n) < C$ for all $ m$ and $ n$.

2024 Korea Junior Math Olympiad (First Round), 8.

Find the number of 4 digit positive integers '$n$' that follow these. 1) the number of digit $ \le $ 6 2) $ 3 \mid n$, but $ 6 \nmid n $

2005 Tournament of Towns, 4

Tags: counting
A $10 \times 12$ paper rectangle is folded along the grid lines several times, forming a thick $1 \times 1$ square. How many pieces of paper can one possibly get by cutting this square along the segment connecting (a) the midpoints of a pair of opposite sides; [i](2 points)[/i] (b) the midpoints of a pair of adjacent sides? [i](4 points)[/i]

2014 Harvard-MIT Mathematics Tournament, 5

Eli, Joy, Paul, and Sam want to form a company; the company will have 16 shares to split among the $4$ people. The following constraints are imposed: $\bullet$ Every person must get a positive integer number of shares, and all $16$ shares must be given out. $\bullet$ No one person can have more shares than the other three people combined. Assuming that shares are indistinguishable, but people are distinguishable, in how many ways can the shares be given out?

2011 AIME Problems, 5

The vertices of a regular nonagon (9-sided polygon) are to be labeled with the digits $1$ through $9$ in such a way that the sum of the numbers on every three consecutive vertices is a multiple of $3$. Two acceptable arrangements are considered to be indistinguishable if one can be obtained from the other by rotating the nonagon in the plane. Find the number of distinguishable acceptable arrangements.

2007 Putnam, 3

Let $ k$ be a positive integer. Suppose that the integers $ 1,2,3,\dots,3k \plus{} 1$ are written down in random order. What is the probability that at no time during this process, the sum of the integers that have been written up to that time is a positive integer divisible by $ 3$ ? Your answer should be in closed form, but may include factorials.

1966 IMO Longlists, 41

Given a regular $n$-gon $A_{1}A_{2}...A_{n}$ (with $n\geq 3$) in a plane. How many triangles of the kind $A_{i}A_{j}A_{k}$ are obtuse ?

2015 AMC 12/AHSME, 17

Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand? $\textbf{(A) }\dfrac{47}{256}\qquad\textbf{(B) }\dfrac{3}{16}\qquad\textbf{(C) }\dfrac{49}{256}\qquad\textbf{(D) }\dfrac{25}{128}\qquad\textbf{(E) }\dfrac{51}{256}$

2018 Iran MO (1st Round), 22

There are eight congruent $1\times 2$ tiles formed of one blue square and one red square. In how many ways can we cover a $4\times 4$ area with these tiles so that each row and each column has two blue squares and two red squares?

2015 USAMO, 4

Steve is piling $m\geq 1$ indistinguishable stones on the squares of an $n\times n$ grid. Each square can have an arbitrarily high pile of stones. After he finished piling his stones in some manner, he can then perform [i]stone moves[/i], defined as follows. Consider any four grid squares, which are corners of a rectangle, i.e. in positions $(i, k), (i, l), (j, k), (j, l)$ for some $1\leq i, j, k, l\leq n$, such that $i<j$ and $k<l$. A stone move consists of either removing one stone from each of $(i, k)$ and $(j, l)$ and moving them to $(i, l)$ and $(j, k)$ respectively, or removing one stone from each of $(i, l)$ and $(j, k)$ and moving them to $(i, k)$ and $(j, l)$ respectively. Two ways of piling the stones are equivalent if they can be obtained from one another by a sequence of stone moves. How many different non-equivalent ways can Steve pile the stones on the grid?

2018 Turkey EGMO TST, 3

In how many ways every unit square of a $2018$ x $2018$ board can be colored in red or white such that number of red unit squares in any two rows are distinct and number of red squares in any two columns are distinct.

2019 Brazil Team Selection Test, 3

Let $n \geq 2$ be an integer. There are $n$ distinct circles in general position, that is, any two of them meet in two distinct points and there are no three of them meeting at one point. Those circles divide the plane in limited regions by circular edges, that meet at vertices (note that each circle have exactly $2n-2$ vertices). For each circle, temporarily color its vertices alternately black and white (note that, doing this, each vertex is colored twice, one for each circle passing through it). If the two temporarily colouring of a vertex coincide, this vertex is definitely colored with this common color; otherwise, it will be colored with gray. Show that if a circle has more than $n-2 + \sqrt{n-2}$ gray points, all vertices of some region are grey. Observation: In this problem, a region cannot contain vertices or circular edges on its interior. Also, the outer region of all circles also counts as a region.

1995 IMO Shortlist, 6

Let $ p$ be an odd prime number. How many $ p$-element subsets $ A$ of $ \{1,2,\dots,2p\}$ are there, the sum of whose elements is divisible by $ p$?

2022 Korea Junior Math Olympiad, 2

For positive integer $n \ge 3$, find the number of ordered pairs $(a_1, a_2, ... , a_n)$ of integers that satisfy the following two conditions [list=disc] [*]For positive integer $i$ such that $1\le i \le n$, $1 \le a_i \le i$ [*]For positive integers $i,j,k$ such that $1\le i < j < k \le n$, if $a_i = a_j$ then $a_j \ge a_k$ [/list]

2000 Dutch Mathematical Olympiad, 2

Three boxes contain 600 balls each. The first box contains 600 identical red balls, the second box contains 600 identical white balls and the third box contains 600 identical blue balls. From these three boxes, 900 balls are chosen. In how many ways can the balls be chosen? For example, one can choose 250 red balls, 187 white balls and 463 balls, or one can choose 360 red balls and 540 blue balls.