This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 401

2021 Indonesia TST, C

Let $p$ be an odd prime. Determine the number of nonempty subsets from $\{1, 2, \dots, p - 1\}$ for which the sum of its elements is divisible by $p$.

2013 Princeton University Math Competition, 2

How many ways are there to color the edges of a hexagon orange and black if we assume that two hexagons are indistinguishable if one can be rotated into the other? Note that we are saying the colorings OOBBOB and BOBBOO are distinct; we ignore flips.

KoMaL A Problems 2024/2025, A. 904

Let $n$ be a given positive integer. Luca, the lazy flea sits on one of the vertices of a regular $2n$-gon. For each jump, Luca picks an axis of symmetry of the polygon, and reflects herself on the chosen axis of symmetry. Let $P(n)$ denote the number of different ways Luca can make $2n$ jumps such that she returns to her original position in the end, and does not pick the same axis twice. (It is possible that Luca's jump does not change her position, however, it still counts as a jump.) [b]a)[/b] Find the value of $P(n)$ if $n$ is odd. [b]b)[/b] Prove that if $n$ is even, then \[P(n)=(n-1)!\cdot n!\cdot \sum_{d\mid n}\left(\varphi\left(\frac{n}d\right)\binom{2d}{d}\right).\] [i]Proposed by Péter Csikvári and Kartal Nagy, Budapest[/i]

2014 Harvard-MIT Mathematics Tournament, 13

An auditorium has two rows of seats, with $50$ seats in each row. $100$ indistinguishable people sit in the seats one at a time, subject to the condition that each person, except for the first person to sit in each row, must sit to the left or right of an occupied seat, and no two people can sit in the same seat. In how many ways can this process occur?

1973 IMO Shortlist, 4

Let $P$ be a set of $7$ different prime numbers and $C$ a set of $28$ different composite numbers each of which is a product of two (not necessarily different) numbers from $P$. The set $C$ is divided into $7$ disjoint four-element subsets such that each of the numbers in one set has a common prime divisor with at least two other numbers in that set. How many such partitions of $C$ are there ?

1997 Slovenia Team Selection Test, 5

A square $ (n \minus{} 1) \times (n \minus{} 1)$ is divided into $ (n \minus{} 1)^2$ unit squares in the usual manner. Each of the $ n^2$ vertices of these squares is to be coloured red or blue. Find the number of different colourings such that each unit square has exactly two red vertices. (Two colouring schemse are regarded as different if at least one vertex is coloured differently in the two schemes.)

2020 HK IMO Preliminary Selection Contest, 19

Four couples are to be seated in a row. If it is required that each woman may only sit next to her husband or another woman, how many different possible seating arrangements are there?

1979 IMO Longlists, 28

Let $A$ and $E$ be opposite vertices of an octagon. A frog starts at vertex $A.$ From any vertex except $E$ it jumps to one of the two adjacent vertices. When it reaches $E$ it stops. Let $a_n$ be the number of distinct paths of exactly $n$ jumps ending at $E$. Prove that: \[ a_{2n-1}=0, \quad a_{2n}={(2+\sqrt2)^{n-1} - (2-\sqrt2)^{n-1} \over\sqrt2}. \]

2014 BAMO, 1

The four bottom corners of a cube are colored red, green, blue, and purple. How many ways are there to color the top four corners of the cube so that every face has four different colored corners? Prove that your answer is correct.

2022 IMC, 5

We colour all the sides and diagonals of a regular polygon $P$ with $43$ vertices either red or blue in such a way that every vertex is an endpoint of $20$ red segments and $22$ blue segments. A triangle formed by vertices of $P$ is called monochromatic if all of its sides have the same colour. Suppose that there are $2022$ blue monochromatic triangles. How many red monochromatic triangles are there?

1983 IMO Longlists, 58

In a test, $3n$ students participate, who are located in three rows of $n$ students in each. The students leave the test room one by one. If $N_1(t), N_2(t), N_3(t)$ denote the numbers of students in the first, second, and third row respectively at time $t$, find the probability that for each t during the test, \[|N_i(t) - N_j(t)| < 2, i \neq j, i, j = 1, 2, \dots .\]

2005 Gheorghe Vranceanu, 3

Within an arithmetic progression of length $ 2005, $ find the number of arithmetic subprogressions of length $ 501 $ that don't contain the $ \text{1000-th} $ term of the progression.

2019 AMC 12/AHSME, 3

Tags: counting
A box contains $28$ red balls, $20$ green balls, $19$ yellow balls, $13$ blue balls, $11$ white balls, and $9$ black balls. What is the minimum number of balls that must be drawn from the box without replacement to guarantee that at least $15$ balls of a single color will be drawn$?$ $\textbf{(A) } 75 \qquad\textbf{(B) } 76 \qquad\textbf{(C) } 79 \qquad\textbf{(D) } 84 \qquad\textbf{(E) } 91$

1980 IMO Longlists, 11

Ten gamblers started playing with the same amount of money. Each turn they cast (threw) five dice. At each stage the gambler who had thrown paid to each of his 9 opponents $\frac{1}{n}$ times the amount which that opponent owned at that moment. They threw and paid one after the other. At the 10th round (i.e. when each gambler has cast the five dice once), the dice showed a total of 12, and after payment it turned out that every player had exactly the same sum as he had at the beginning. Is it possible to determine the total shown by the dice at the nine former rounds ?

1984 AIME Problems, 11

A gardener plants three maple trees, four oak trees, and five birch trees in a row. He plants them in random order, each arrangement being equally likely. Let $\frac{m}{n}$ in lowest terms be the probability that no two birch trees are next to one another. Find $m + n$.

1999 IMO Shortlist, 3

A biologist watches a chameleon. The chameleon catches flies and rests after each catch. The biologist notices that: [list=1][*]the first fly is caught after a resting period of one minute; [*]the resting period before catching the $2m^\text{th}$ fly is the same as the resting period before catching the $m^\text{th}$ fly and one minute shorter than the resting period before catching the $(2m+1)^\text{th}$ fly; [*]when the chameleon stops resting, he catches a fly instantly.[/list] [list=a][*]How many flies were caught by the chameleon before his first resting period of $9$ minutes in a row? [*]After how many minutes will the chameleon catch his $98^\text{th}$ fly? [*]How many flies were caught by the chameleon after 1999 minutes have passed?[/list]

2007 USA Team Selection Test, 6

For a polynomial $ P(x)$ with integer coefficients, $ r(2i \minus{} 1)$ (for $ i \equal{} 1,2,3,\ldots,512$) is the remainder obtained when $ P(2i \minus{} 1)$ is divided by $ 1024$. The sequence \[ (r(1),r(3),\ldots,r(1023)) \] is called the [i]remainder sequence[/i] of $ P(x)$. A remainder sequence is called [i]complete[/i] if it is a permutation of $ (1,3,5,\ldots,1023)$. Prove that there are no more than $ 2^{35}$ different complete remainder sequences.

2016 Germany National Olympiad (4th Round), 2

A very well known family of mathematicians has three children called [i]Antonia, Bernhard[/i] and [i]Christian[/i]. Each evening one of the children has to do the dishes. One day, their dad decided to construct of plan that says which child has to do the dishes at which day for the following $55$ days. Let $x$ be the number of possible such plans in which Antonia has to do the dishes on three consecutive days at least once. Furthermore, let $y$ be the number of such plans in which there are three consecutive days in which Antonia does the dishes on the first, Bernhard on the second and Christian on the third day. Determine, whether $x$ and $y$ are different and if so, then decide which of those is larger.

2011 Israel National Olympiad, 3

In some foreign country's government, there are 12 ministers. Each minister has 5 friends and 6 enemies in the government (friendship/enemyship is a symmetric relation). A triplet of ministers is called [b]uniform[/b] if all three of them are friends with each other, or all three of them are enemies. How many uniform triplets are there?

2002 AIME Problems, 9

Let $\mathcal{S}$ be the set $\{1,2,3,\ldots,10\}.$ Let $n$ be the number of sets of two non-empty disjoint subsets of $\mathcal{S}.$ (Disjoint sets are defined as sets that have no common elements.) Find the remainder obtained when $n$ is divided by $1000.$

2001 AIME Problems, 6

A fair die is rolled four times. The probability that each of the final three rolls is at least as large as the roll preceding it may be expressed in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2013 ELMO Shortlist, 8

We define the [i]Fibonacci sequence[/i] $\{F_n\}_{n\ge0}$ by $F_0=0$, $F_1=1$, and for $n\ge2$, $F_n=F_{n-1}+F_{n-2}$; we define the [i]Stirling number of the second kind[/i] $S(n,k)$ as the number of ways to partition a set of $n\ge1$ distinguishable elements into $k\ge1$ indistinguishable nonempty subsets. For every positive integer $n$, let $t_n = \sum_{k=1}^{n} S(n,k) F_k$. Let $p\ge7$ be a prime. Prove that \[ t_{n+p^{2p}-1} \equiv t_n \pmod{p} \] for all $n\ge1$. [i]Proposed by Victor Wang[/i]

2018 Iran MO (1st Round), 2

A factory packs its products in cubic boxes. In one store, they put $512$ of these cubic boxes together to make a large $8\times 8 \times 8$ cube. When the temperature goes higher than a limit in the store, it is necessary to separate the $512$ set of boxes using horizontal and vertical plates so that each box has at least one face which is not touching other boxes. What is the least number of plates needed for this purpose?

1983 IMO Shortlist, 13

Let $E$ be the set of $1983^3$ points of the space $\mathbb R^3$ all three of whose coordinates are integers between $0$ and $1982$ (including $0$ and $1982$). A coloring of $E$ is a map from $E$ to the set {red, blue}. How many colorings of $E$ are there satisfying the following property: The number of red vertices among the $8$ vertices of any right-angled parallelepiped is a multiple of $4$ ?

1987 IMO, 1

Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.