This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 16

2000 All-Russian Olympiad Regional Round, 11.2

The height and radius of the base of the cylinder are equal to $1$. What is the smallest number of balls of radius $1$ that can cover the entire cylinder?

1981 Spain Mathematical Olympiad, 2

A cylindrical glass beaker is $8$ cm high and its circumference rim is $12$ cm wide . Inside, $3$ cm from the edge, there is a tiny drop of honey. In a point on its outer surface, belonging to the plane passing through the axis of the cylinder and for the drop of honey, and located $1$ cm from the base (or bottom) of the glass, there is a fly. What is the shortest path that the fly must travel, walking on the surface from the glass, to the drop of honey, and how long is said path? [hide=original wording]Un vaso de vidrio cil´ındrico tiene 8 cm de altura y su borde 12 cm de circunferencia. En su interior, a 3 cm del borde, hay una diminuta gota de miel. En un punto de su superficie exterior, perteneciente al plano que pasa por el eje del cilindro y por la gota de miel, y situado a 1 cm de la base (o fondo) del vaso, hay una mosca. ¿Cu´al es el camino m´as corto que la mosca debe recorrer, andando sobre la superficie del vaso, hasta la gota de miel, y qu´e longitud tiene dicho camino?[/hide]

1994 Abels Math Contest (Norwegian MO), 1a

In a half-ball of radius $3$ is inscribed a cylinder with base lying on the base plane of the half-ball, and another such cylinder with equal volume. If the base-radius of the first cylinder is $\sqrt3$, what is the base-radius of the other one?

2010 Oral Moscow Geometry Olympiad, 5

All edges of a regular right pyramid are equal to $1$, and all vertices lie on the side surface of a (infinite) right circular cylinder of radius $R$. Find all possible values of $R$.

1994 Denmark MO - Mohr Contest, 1

A wine glass with a cross section as shown has the property of an orange in shape as a sphere with a radius of $3$ cm just can be placed in the glass without protruding above glass. Determine the height $h$ of the glass. [img]https://1.bp.blogspot.com/-IuLm_IPTvTs/XzcH4FAjq5I/AAAAAAAAMYY/qMi4ng91us8XsFUtnwS-hb6PqLwAON_jwCLcBGAsYHQ/s0/1994%2BMohr%2Bp1.png[/img]

1983 Spain Mathematical Olympiad, 1

While Theophrastus was talking to Aristotle about the classification of plants, had a dog tied to a perfectly smooth cylindrical column of radius $r$, with a very fine rope that wrapped around the column and with a loop. The dog had the extreme free from the rope around his neck. In trying to reach Theophrastus, he put the rope tight and it broke. Find out how far from the column the knot was in the time to break the rope. [hide=original wording]Mientras Teofrasto hablaba con Arist´oteles sobre la clasificaci´on de las plantas, ten´ıa un perro atado a una columna cil´ındrica perfectamente lisa de radio r, con una cuerda muy fina que envolv´ıa la columna y con un lazo. El perro ten´ıa el extremo libre de la cuerda cogido a su cuello. Al intentar alcanzar a Teofrasto, puso la cuerda tirante y ´esta se rompi´o. Averiguar a qu´e distancia de la columna estaba el nudo en el momento de romperse la cuerda.[/hide]

2020 BMT Fall, 5

A Yule log is shaped like a right cylinder with height $10$ and diameter $5$. Freya cuts it parallel to its bases into $9$ right cylindrical slices. After Freya cut it, the combined surface area of the slices of the Yule log increased by $a\pi$. Compute $a$.

Denmark (Mohr) - geometry, 1994.1

A wine glass with a cross section as shown has the property of an orange in shape as a sphere with a radius of $3$ cm just can be placed in the glass without protruding above glass. Determine the height $h$ of the glass. [img]https://1.bp.blogspot.com/-IuLm_IPTvTs/XzcH4FAjq5I/AAAAAAAAMYY/qMi4ng91us8XsFUtnwS-hb6PqLwAON_jwCLcBGAsYHQ/s0/1994%2BMohr%2Bp1.png[/img]

IV Soros Olympiad 1997 - 98 (Russia), 11.4

Find the largest value of the area of the projection of the cylinder onto the plane if its radius is $r$ and its height is $h$ (orthogonal projection).

2014 BMT Spring, 13

A cylinder is inscribed within a sphere of radius 10 such that its volume is [i]almost-half[/i] that of the sphere. If [i]almost-half[/i] is defined such that the cylinder has volume $\frac12+\frac{1}{250}$ times the sphere’s volume, find the sum of all possible heights for the cylinder.

Ukrainian TYM Qualifying - geometry, II.1

Inside a right cylinder with a radius of the base $R$ are placed $k$ ($k\ge 3$) of equal balls, each of which touches the side surface and the lower base of the cylinder and, in addition, exactly two other balls. After that, another equal ball is placed inside the cylinder so that it touches the upper base of the cylinder and all other balls. Find the volume $V (R, k)$ of the cylinder.

1952 Putnam, B4

A homogeneous solid body is made by joining a base of a circular cylinder of height $h$ and radius $r,$ and the base of a hemisphere of radius $r.$ This body is placed with the hemispherical end on a horizontal table, with the axis of the cylinder in a vertical position, and then slightly oscillated. It is intuitively evident that if $r$ is large as compared to $h$, the equilibrium will be stable; but if $r$ is small compared to $h$, the equilibrium will be unstable. What is the critical value of the ratio $r\slash h$ which enables the body to rest in neutral equilibrium in any position?

2019 Flanders Math Olympiad, 1

Two touching balls with radii $a$ and $b$ are enclosed in a cylindrical tin of diameter $d$ . Both balls hit the top surface and the shell of the cylinder. The largest ball also hits the bottom surface. Show that $\sqrt{d} =\sqrt{a} +\sqrt{b}$ [img]https://1.bp.blogspot.com/-O4B3P3bghFs/Xy1fDv9zGkI/AAAAAAAAMSQ/ePLVnsXsRi0mz3SWBpIzfGdsizWoLmGVACLcBGAsYHQ/s0/flanders%2B2019%2Bp1.png[/img]

2019 BMT Spring, 3

A cylinder with radius $5$ and height $1$ is rolling on the (unslanted) floor. Inside the cylinder, there is water that has constant height $\frac{15}{2}$ as the cylinder rolls on the floor. What is the volume of the water?

1952 Moscow Mathematical Olympiad, 228

How to arrange three right circular cylinders of diameter $a/2$ and height $a$ into an empty cube with side $a$ so that the cylinders could not change position inside the cube? Each cylinder can, however, rotate about its axis of symmetry.

Ukrainian TYM Qualifying - geometry, XI.13

On the plane there are two cylindrical towers with radii of bases $r$ and $R$. Find the set of all those points of the plane from which these towers are visible at the same angle. Consider the case of more towers.