Found problems: 9
2007 IMO Shortlist, 3
The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
2008 Germany Team Selection Test, 2
The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
2020 IOM, 6
In convex pentagon $ABCDE$ points $A_1$, $B_1$, $C_1$, $D_1$, $E_1$ are intersections of pairs of diagonals $(BD, CE)$, $(CE, DA)$, $(DA, EB)$, $(EB, AC)$ and $(AC, BD)$ respectively. Prove that if four of quadrilaterals $AB_{1}A_{1}B$, $BC_{1}B_{1}C$, $CD_{1}C_{1}D$, $DE_{1}D_{1}E$ and $EA_{1}E_{1}A$ are cyclic then the fifth one is also cyclic.
2008 Germany Team Selection Test, 2
The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
Kvant 2021, M2640
In convex pentagon $ABCDE$ points $A_1$, $B_1$, $C_1$, $D_1$, $E_1$ are intersections of pairs of diagonals $(BD, CE)$, $(CE, DA)$, $(DA, EB)$, $(EB, AC)$ and $(AC, BD)$ respectively. Prove that if four of quadrilaterals $AB_{1}A_{1}B$, $BC_{1}B_{1}C$, $CD_{1}C_{1}D$, $DE_{1}D_{1}E$ and $EA_{1}E_{1}A$ are cyclic then the fifth one is also cyclic.
2008 Brazil Team Selection Test, 4
The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$.
[i]Author: Vyacheslav Yasinskiy, Ukraine[/i]
Russian TST 2022, P3
Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.
2022 Taiwan TST Round 2, 3
Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.
2021 IMO Shortlist, G8
Let $ABC$ be a triangle with circumcircle $\omega$ and let $\Omega_A$ be the $A$-excircle. Let $X$ and $Y$ be the intersection points of $\omega$ and $\Omega_A$. Let $P$ and $Q$ be the projections of $A$ onto the tangent lines to $\Omega_A$ at $X$ and $Y$ respectively. The tangent line at $P$ to the circumcircle of the triangle $APX$ intersects the tangent line at $Q$ to the circumcircle of the triangle $AQY$ at a point $R$. Prove that $\overline{AR} \perp \overline{BC}$.