This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 573

1968 German National Olympiad, 4

Sixteen natural numbers written in the decimal system may form a geometric sequence, of which the first five members have nine digits, five further members have ten digits, four members have eleven digits and two terms have twelve digits. Prove that there is exactly one sequence with these properties.

1999 Cono Sur Olympiad, 4

Let $A$ be a six-digit number, three of which are colored and equal to $1, 2$, and $4$. Prove that it is always possible to obtain a number that is a multiple of $7$, by performing only one of the following operations: either delete the three colored figures, or write all the numbers of $A$ in some order.

2022 IFYM, Sozopol, 4

A natural number $x$ is written on the board. In one move, we can take the number on the board and between any two of its digits in its decimal notation we can we put a sign $+$, or we may not put it, then we calculate the obtained result and we write it on the board in place of $x$. For example, from the number $819$. we can get $18$ by $8 + 1 + 9$, $90$ by $81 + 9$, and $27$ by $8 + 19$. Prove that no matter what $x$ is, we can reach a single digit number with at most $4$ moves.

2005 May Olympiad, 1

Find the smallest $3$-digit number that is the product of two $2$-digit numbers , so that the seven digits of these three numbers are all different.

2014 Contests, 2

The first term of a sequence is $2014$. Each succeeding term is the sum of the cubes of the digits of the previous term. What is the $2014$ th term of the sequence?

1997 VJIMC, Problem 4-M

Find all real numbers $a>0$ for which the series $$\sum_{n=1}^\infty\frac{a^{f(n)}}{n^2}$$is convergent; $f(n)$ denotes the number of $0$'s in the decimal expansion of $f$.

2007 Regional Olympiad of Mexico Center Zone, 6

Certain tickets are numbered as follows: $1, 2, 3, \dots, N $. Exactly half of the tickets have the digit $ 1$ on them. If $N$ is a three-digit number, determine all possible values ​​of $N $.

1988 Tournament Of Towns, (175) 1

Is it possible to select two natural numbers $m$ and $n$ so that the number $n$ results from a permutation of the digits of $m$, and $m+n =999 . . . 9$ ?

1989 Tournament Of Towns, (217) 1

Find a pair of $2$ six-digit numbers such that, if they are written down side by side to form a twelve-digit number , this number is divisible by the product of the two original numbers. Find all such pairs of six-digit numbers. ( M . N . Gusarov, Leningrad)

2003 May Olympiad, 1

Pedro writes all the numbers with four different digits that can be made with digits $a, b, c, d$, that meet the following conditions: $$ a\ne 0 \, , \, b=a+2 \, , \, c=b+2 \, , \, d=c+2$$ Find the sum of all the numbers Pedro wrote.

2017 Romania National Olympiad, 1

Consider the set $$M = \left\{\frac{a}{\overline{ba}}+\frac{b}{\overline{ab}} \, | a,b\in\{1,2,3,4,5,6,7,8,9\} \right\}.$$ a) Show that the set $M$ contains no integer. b) Find the smallest and the largest element of $M$

1990 IMO Shortlist, 8

For a given positive integer $ k$ denote the square of the sum of its digits by $ f_1(k)$ and let $ f_{n\plus{}1}(k) \equal{} f_1(f_n(k)).$ Determine the value of $ f_{1991}(2^{1990}).$

2018 India PRMO, 20

Determine the sum of all possible positive integers $n, $ the product of whose digits equals $n^2 -15n -27$.

1968 IMO, 2

Find all natural numbers $n$ the product of whose decimal digits is $n^2-10n-22$.

2024 Kyiv City MO Round 2, Problem 1

For some positive integer $n$, Katya wrote on the board next to each other numbers $2^n$ and $14^n$ (in this order), thus forming a new number $A$. Can the number $A - 1$ be prime? [i]Proposed by Oleksii Masalitin[/i]

2007 Junior Balkan Team Selection Tests - Moldova, 5

Determine the smallest natural number written in the decimal system with the product of the digits equal to $10! = 1 \cdot 2 \cdot 3\cdot ... \cdot9\cdot10$.

1994 Chile National Olympiad, 3

Let $x$ be an integer of $n$ digits, all equal to $ 1$. Show that if $x$ is prime, then $n$ is also prime.

2022 Durer Math Competition Finals, 7

The [i]fragments [/i] of a positive integer are the numbers seen when reading one or more of its digits in order. The [i]fragment sum[/i] equals the sum of all the fragments, including the number itself. For example, the fragment sum of $2022$ is $2022+202+022+20+02+22+2+0+2+2 = 2296$. There is another four-digit number with the same fragment sum. What is it? As the example shows, if a fragment occurs multiple times, then all its occurrences are added, and the fragments beginning with $0$ also count (for instance, $022$ is worth $22$).

1998 Tuymaada Olympiad, 6

Prove that the sequence of the first digits of the numbers in the form $2^n+3^n$ is nonperiodic.

2010 Singapore Junior Math Olympiad, 2

Find the sum of all the $5$-digit integers which are not multiples of $11$ and whose digits are $1, 3, 4, 7, 9$.

2016 Puerto Rico Team Selection Test, 2

Determine all $6$-digit numbers $(abcdef)$ such that $(abcdef) = (def)^2$ where $(x_1x_2...x_n)$ is not a multiplication but a number of $n$ digits.

1970 All Soviet Union Mathematical Olympiad, 142

All natural numbers containing not more than $n$ digits are divided onto two groups. The first contains the numbers with the even sum of the digits, the second -- with the odd sum. Prove that if $0<k<n$ than the sum of the $k$-th powers of the numbers in the first group equals to the sum of the $k$-th powers of the numbers in the second group.

2019 Durer Math Competition Finals, 12

$P$ and $Q$ are two different non-constant polynomials such that $P(Q(x)) = P(x)Q(x)$ and $P(1) = P(-1) = 2019$. What are the last four digits of $Q(P(-1))$?

1998 Israel National Olympiad, 2

Show that there is a multiple of $2^{1998}$ whose decimal representation consists only of the digits $1$ and $2$.

1991 Tournament Of Towns, (287) 3

We are looking for numbers ending with the digit $5$ such that in their decimal expansion each digit beginning with the second digit is no less than the previous one. Moreover the squares of these numbers must also possess the same property. (a) Find four such numbers. (b) Prove that there are infinitely many. (A. Andjans, Riga)