Found problems: 387
VMEO III 2006 Shortlist, N6
Find all sets of natural numbers $(a, b, c)$ such that $$a+1|b^2+c^2\,\, , b+1|c^2+a^2\,\,, c+1|a^2+b^2.$$
1999 Estonia National Olympiad, 5
On the squares $a1, a2,... , a8$ of a chessboard there are respectively $2^0, 2^1, ..., 2^7$ grains of oat, on the squares $b8, b7,..., b1$ respectively $2^8, 2^9, ..., 2^{15}$ grains of oat, on the squares $c1, c2,..., c8$ respectively $2^{16}, 2^{17}, ..., 2^{23}$ grains of oat etc. (so there are $2^{63}$ grains of oat on the square $h1$). A knight starts moving from some square and eats after each move all the grains of oat on the square to which it had jumped, but immediately after the knight leaves the square the same number of grains of oat reappear. With the last move the knight arrives to the same square from which it started moving. Prove that the number of grains of oat eaten by the knight is divisible by $3$.
2022 Saudi Arabia IMO TST, 1
Let $(a_n)$ be the integer sequence which is defined by $a_1= 1$ and
$$ a_{n+1}=a_n^2 + n \cdot a_n \,\, , \,\, \forall n \ge 1.$$
Let $S$ be the set of all primes $p$ such that there exists an index $i$ such that $p|a_i$.
Prove that the set $S$ is an infinite set and it is not equal to the set of all primes.
2013 Czech-Polish-Slovak Junior Match, 4
Determine the largest two-digit number $d$ with the following property:
for any six-digit number $\overline{aabbcc}$ number $d$ is a divisor of the number $\overline{aabbcc}$ if and only if the number $d$ is a divisor of the corresponding three-digit number $\overline{abc}$.
Note The numbers $a \ne 0, b$ and $c$ need not be different.
2013 Abels Math Contest (Norwegian MO) Final, 3
A prime number $p \ge 5$ is given. Write $\frac13+\frac24+... +\frac{p -3}{p - 1}=\frac{a}{b}$ for natural numbers $a$ and $b$. Show that $p$ divides $a$.
1977 Swedish Mathematical Competition, 1
$p$ is a prime. Find the largest integer $d$ such that $p^d$ divides $p^4!$.
2019 Saudi Arabia IMO TST, 1
Let $a_0$ be an arbitrary positive integer. Let $(a_n)$ be infinite sequence of positive integers such that for every positive integer $n$, the term $a_n$ is the smallest positive integer such that $a_0 + a_1 +... + a_n$ is divisible by $n$. Prove that there exist $N$ such that $a_{n+1} = a_n$ for all $n \ge N$
1958 Polish MO Finals, 1
Prove that the product of three consecutive natural numbers, the middle of which is the cube of a natural number, is divisible by $ 504 $ .
2019 New Zealand MO, 4
Show that the number $122^n - 102^n - 21^n$ is always one less than a multiple of $2020$, for any positive integer $n$.
VMEO III 2006, 10.2
Prove that among $39$ consecutive natural numbers, there is always a number that has sum of its digits divisible by $ 12$. Is it true if we replace $39$ with $38$?
2018 Grand Duchy of Lithuania, 4
Find all positive integers $n$ for which there exists a positive integer $k$ such that for every positive divisor $d$ of $n$, the number $d - k$ is also a (not necessarily positive) divisor of $n$.
2019 Final Mathematical Cup, 3
Determine every prime numbers $p$ and $q , p \le q$ for which $pq | (5^p - 2^ p )(7^q -2 ^q )$
2000 Kazakhstan National Olympiad, 5
Let the number $ p $ be a prime divisor of the number $ 2 ^ {2 ^ k} + 1 $. Prove that $ p-1 $ is divisible by $ 2 ^ {k + 1} $.
2015 Finnish National High School Mathematics Comp, 3
Determine the largest integer $k$ for which $12^k$ is a factor of $120! $
2009 Kyiv Mathematical Festival, 5
The sequence of positive integers $\{a_n, n\ge 1\}$ is such that $a_n\le a_{n+1}\le a_n+5$ and $a_n$ is divisible by $n$ for all $n \ge 1$. What are the possible values of $a_1$?
2013 Tournament of Towns, 6
The number $1- \frac12 +\frac13-\frac14+...+\frac{1}{2n-1}-\frac{1}{2n}$ is represented as an irreducible fraction. If $3n+1$ is a prime number, prove that the numerator of this fraction is a multiple of $3n + 1$.
1975 Chisinau City MO, 102
Two people write a $2k$-digit number, using only the numbers $1, 2, 3, 4$ and $5$. The first number on the left is written by the first of them, the second - the second, the third - the first, etc. Can the second one achieve this so that the resulting number is divisible by $9$, if the first seeks to interfere with it? Consider the cases $k = 10$ and $k = 15$.
2010 Saudi Arabia IMO TST, 3
Consider the sequence $a_1 = 3$ and $a_{n + 1} =\frac{3a_n^2+1}{2}-a_n$ for $n = 1 ,2 ,...$.
Prove that if $n$ is a power of $3$ then $n$ divides $a_n$ .
2005 Thailand Mathematical Olympiad, 2
Let $S $ be a set of three distinct integers. Show that there are $a, b \in S$ such that $a \ne b$ and $10 | a^3b - ab^3$.
2021 Dutch IMO TST, 3
Prove that for every positive integer $n$ there are positive integers $a$ and $b$ exist with $n | 4a^2 + 9b^2 -1$.
2013 Junior Balkan Team Selection Tests - Romania, 1
Find all pairs of integers $(x,y)$ satisfying the following condition:
[i]each of the numbers $x^3 + y$ and $x + y^3$ is divisible by $x^2 + y^2$
[/i]
Tournament of Towns
1993 All-Russian Olympiad Regional Round, 9.2
Find the largest natural number which cannot be turned into a multiple of $11$ by reordering its (decimal) digits.
2021 Francophone Mathematical Olympiad, 1
Let $a_1,a_2,a_3,\ldots$ and $b_1,b_2,b_3,\ldots$ be positive integers such that $a_{n+2} = a_n + a_{n+1}$ and $b_{n+2} = b_n + b_{n+1}$ for all $n \ge 1$. Assume that $a_n$ divides $b_n$ for infinitely many values of $n$. Prove that there exists an integer $c$ such that $b_n = c a_n$ for all $n \ge 1$.
2019 Saudi Arabia Pre-TST + Training Tests, 1.2
Determine all arithmetic sequences $a_1, a_2,...$ for which there exists integer $N > 1$ such that for any positive integer $k$ the following divisibility holds $a_1a_2 ...a_k | a_{N+1}a_{N+2}...a_{N+k}$ .
2018 Saudi Arabia BMO TST, 3
Find all positive integers $n$ such that $\phi (n)$ is a divisor of $n^2+3$.