This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 545

1974 IMO Longlists, 30

Prove that for any n natural, the number \[ \sum \limits_{k=0}^{n} \binom{2n+1}{2k+1} 2^{3k} \] cannot be divided by $5$.

2024 Kyiv City MO Round 1, Problem 1

Find all pairs of positive integers $(a, b)$ such that $4b - 1$ is divisible by $3a + 1$ and $3a - 1$ is divisible by $2b + 1$.

2004 IMO Shortlist, 6

Given an integer ${n>1}$, denote by $P_{n}$ the product of all positive integers $x$ less than $n$ and such that $n$ divides ${x^2-1}$. For each ${n>1}$, find the remainder of $P_{n}$ on division by $n$. [i]Proposed by John Murray, Ireland[/i]

1992 IMO Longlists, 31

Let $ f(x) \equal{} x^8 \plus{} 4x^6 \plus{} 2x^4 \plus{} 28x^2 \plus{} 1.$ Let $ p > 3$ be a prime and suppose there exists an integer $ z$ such that $ p$ divides $ f(z).$ Prove that there exist integers $ z_1, z_2, \ldots, z_8$ such that if \[ g(x) \equal{} (x \minus{} z_1)(x \minus{} z_2) \cdot \ldots \cdot (x \minus{} z_8),\] then all coefficients of $ f(x) \minus{} g(x)$ are divisible by $ p.$

2009 Ukraine Team Selection Test, 7

Let $ a_1$, $ a_2$, $ \ldots$, $ a_n$ be distinct positive integers, $ n\ge 3$. Prove that there exist distinct indices $ i$ and $ j$ such that $ a_i \plus{} a_j$ does not divide any of the numbers $ 3a_1$, $ 3a_2$, $ \ldots$, $ 3a_n$. [i]Proposed by Mohsen Jamaali, Iran[/i]

2016 Brazil Team Selection Test, 2

Let $a$ and $b$ be positive integers such that $a! + b!$ divides $a!b!$. Prove that $3a \ge 2b + 2$.

1992 IMO Longlists, 63

Let $a$ and $b$ be integers. Prove that $\frac{2a^2-1}{b^2+2}$ is not an integer.

1975 IMO Shortlist, 6

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

2002 VJIMC, Problem 2

Let $p>3$ be a prime number and $n=\frac{2^{2p}-1}3$. Show that $n$ divides $2^n-2$.

2022 China Team Selection Test, 6

Given a positive integer $n$, let $D$ be the set of all positive divisors of $n$. The subsets $A,B$ of $D$ satisfies that for any $a \in A$ and $b \in B$, it holds that $a \nmid b$ and $b \nmid a$. Show that \[ \sqrt{|A|}+\sqrt{|B|} \le \sqrt{|D|}. \]

1990 IMO Longlists, 65

Prove that every integer $ k$ greater than 1 has a multiple that is less than $ k^4$ and can be written in the decimal system with at most four different digits.

2015 Israel National Olympiad, 4

Let $k,m,n$ be positive integers such that $n^m$ is divisible by $m^n$, and $m^k$ is divisible by $k^m$. [list=a] [*] Prove that $n^k$ is divisible by $k^n$. [*] Find an example of $k,m,n$ satisfying the above conditions, where all three numbers are distinct and bigger than 1. [/list]

2014 Contests, 3

Let $1000 \leq n = \text{ABCD}_{10} \leq 9999$ be a positive integer whose digits $\text{ABCD}$ satisfy the divisibility condition: $$1111 | (\text{ABCD} + \text{AB} \times \text{CD}).$$ Determine the smallest possible value of $n$.

2019 Bundeswettbewerb Mathematik, 2

The lettes $A,C,F,H,L$ and $S$ represent six not necessarily distinct decimal digits so that $S \ne 0$ and $F \ne 0$. We form the two six-digit numbers $SCHLAF$ and $FLACHS$. Show that the difference of these two numbers is divisible by $271$ if and only if $C=L$ and $H=A$. [i]Remark:[/i] The words "Schlaf" and "Flachs" are German for "sleep" and "flax".

2016 Kyiv Mathematical Festival, P5

On the board a 20-digit number which have 10 ones and 10 twos in its decimal form is written. It is allowed to choose two different digits and to reverse the order of digits in the interval between them. Is it always possible to get a number divisible by 11 using such operations?

2022 Greece Team Selection Test, 1

Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$

2018 Dutch BxMO TST, 3

Let $p$ be a prime number. Prove that it is possible to choose a permutation $a_1, a_2,...,a_p$ of $1,2,...,p$ such that the numbers $a_1, a_1a_2, a_1a_2a_3,..., a_1a_2a_3...a_p$ all have different remainder upon division by $p$.

2021 Iran RMM TST, 1

Let $P(x)=x^{2016}+2x^{2015}+...+2017,Q(x)=1399x^{1398}+...+2x+1$. Prove that there are strictly increasing sequances $a_i,b_i, i=1,...$ of positive integers such that $gcd(a_i,a_{i+1})=1$ for each $i$. Moreover, for each even $i$, $P(b_i) \nmid a_i, Q(b_i) | a_i$ and for each odd $i$, $P(b_i)|a_i,Q(b_i) \nmid a_i$ Proposed by [i]Shayan Talaei[/i]

2025 Bulgarian Winter Tournament, 12.3

Determine all functions $f: \mathbb{Z}_{\geq 2025} \to \mathbb{Z}_{>0}$ such that $mn+1$ divides $f(m)f(n) + 1$ for any integers $m,n \geq 2025$ and there exists a polynomial $P$ with integer coefficients, such that $f(n) \leq P(n)$ for all $n\geq 2025$.

2015 Czech and Slovak Olympiad III A, 6

Integer $n>2$ is given. Find the biggest integer $d$, for which holds, that from any set $S$ consisting of $n$ integers, we can find three different (but not necesarilly disjoint) nonempty subsets, such that sum of elements of each of them is divisible by $d$.

2024 Kyiv City MO Round 1, Problem 3

Let $n>1$ be a given positive integer. Petro and Vasyl play the following game. They take turns making moves and Petro goes first. In one turn, a player chooses one of the numbers from $1$ to $n$ that wasn't selected before and writes it on the board. The first player after whose turn the product of the numbers on the board will be divisible by $n$ loses. Who wins if every player wants to win? Find answer for each $n>1$. [i]Proposed by Mykhailo Shtandenko, Anton Trygub[/i]

2008 Ukraine Team Selection Test, 10

Let $b,n > 1$ be integers. Suppose that for each $k > 1$ there exists an integer $a_k$ such that $b - a^n_k$ is divisible by $k$. Prove that $b = A^n$ for some integer $A$. [i]Author: Dan Brown, Canada[/i]

2012 India Regional Mathematical Olympiad, 2

Let $a,b,c$ be positive integers such that $a|b^2, b|c^2$ and $c|a^2$. Prove that $abc|(a+b+c)^{7}$

2023-24 IOQM India, 4

Let $x, y$ be positive integers such that $$ x^4=(x-1)\left(y^3-23\right)-1 . $$ Find the maximum possible value of $x+y$.

2020/2021 Tournament of Towns, P3

A positive integer number $N{}$ is divisible by 2020. All its digits are different and if any two of them are swapped, the resulting number is not divisible by 2020. How many digits can such a number $N{}$ have? [i]Sergey Tokarev[/i]