This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 310

2018 Danube Mathematical Competition, 1

Find all the pairs $(n, m)$ of positive integers which fulfil simultaneously the conditions: i) the number $n$ is composite; ii) if the numbers $d_1, d_2, ..., d_k, k \in N^*$ are all the proper divisors of $n$, then the numbers $d_1 + 1, d_2 + 1, . . . , d_k + 1$ are all the proper divisors of $m$.

1998 IMO, 3

For any positive integer $n$, let $\tau (n)$ denote the number of its positive divisors (including 1 and itself). Determine all positive integers $m$ for which there exists a positive integer $n$ such that $\frac{\tau (n^{2})}{\tau (n)}=m$.

2024 Romania EGMO TST, P4

Find all composite positive integers $a{}$ for which there exists a positive integer $b\geqslant a$ with the same number of divisors as $a{}$ with the following property: if $a_1<\cdots<a_n$ and $b_1<\cdots<b_n$ are the proper divisors of $a{}$ and $b{}$ respectively, then $a_i+b_i, 1\leqslant i\leqslant n$ are the proper divisors of some positive integer $c.{}$

2018 Flanders Math Olympiad, 3

Write down $f(n)$ for the greatest odd divisor of $n \in N_0$. (a) Determine $f (n + 1) + f (n + 2) + ... + f(2n)$. (b) Determine $f(1) + f(2) + f(3) + ... + f(2n)$.

2016 AMC 12/AHSME, 18

For some positive integer $n$, the number $110n^3$ has $110$ positive integer divisors, including $1$ and the number $110n^3$. How many positive integer divisors does the number $81n^4$ have? $\textbf{(A) }110 \qquad \textbf{(B) } 191 \qquad \textbf{(C) } 261 \qquad \textbf{(D) } 325 \qquad \textbf{(E) } 425$

1992 Mexico National Olympiad, 4

Show that $1 + 11^{11} + 111^{111} + 1111^{1111} +...+ 1111111111^{1111111111}$ is divisible by $100$.

2018 Poland - Second Round, 2

Let $n$ be a positive integer, which gives remainder $4$ of dividing by $8$. Numbers $1 = k_1 < k_2 < ... < k_m = n$ are all positive diivisors of $n$. Show that if $i \in \{ 1, 2, ..., m - 1 \}$ isn't divisible by $3$, then $k_{i + 1} \le 2k_{i}$.

2024 Baltic Way, 19

Does there exist a positive integer $N$ which is divisible by at least $2024$ distinct primes and whose positive divisors $1 = d_1 < d_2 < \ldots < d_k = N$ are such that the number \[ \frac{d_2}{d_1}+\frac{d_3}{d_2}+\ldots+\frac{d_k}{d_{k-1}} \] is an integer?

1988 Mexico National Olympiad, 2

If $a$ and $b$ are positive integers, prove that $11a+2b$ is a multiple of $19$ if and only if so is $18a+5b$ .

2024 Belarusian National Olympiad, 10.1

Let $1=d_1<d_2<\ldots<d_k=n$ be all divisors of $n$. It turned out that numbers $d_2-d_1,\ldots,d_k-d_{k-1}$ are $1,3,\ldots,2k-3$ in some order. Find all possible values of $n$ [i]M. Zorka[/i]

2008 IMO Shortlist, 5

For every $ n\in\mathbb{N}$ let $ d(n)$ denote the number of (positive) divisors of $ n$. Find all functions $ f: \mathbb{N}\to\mathbb{N}$ with the following properties: [list][*] $ d\left(f(x)\right) \equal{} x$ for all $ x\in\mathbb{N}$. [*] $ f(xy)$ divides $ (x \minus{} 1)y^{xy \minus{} 1}f(x)$ for all $ x$, $ y\in\mathbb{N}$.[/list] [i]Proposed by Bruno Le Floch, France[/i]

1956 Moscow Mathematical Olympiad, 323

a) Find all integers that can divide both the numerator and denominator of the ratio $\frac{5m + 6}{8m + 7}$ for an integer $m$. b) Let $a, b, c, d, m$ be integers. Prove that if the numerator and denominator of the ratio $\frac{am + b}{cm+ d}$ are both divisible by $k$, then so is $ad - bc$.

2021 Bangladeshi National Mathematical Olympiad, 10

A positive integer $n$ is called [i]nice[/i] if it has at least $3$ proper divisors and it is equal to the sum of its three largest proper divisors. For example, $6$ is [i]nice[/i] because its largest three proper divisors are $3,2,1$ and $6=3+2+1$. Find the number of [i]nice[/i] integers not greater than $3000$.

1989 Romania Team Selection Test, 4

A family of finite sets $\left\{ A_{1},A_{2},.......,A_{m}\right\} $is called [i]equipartitionable [/i] if there is a function $\varphi:\cup_{i=1}^{m}$$\rightarrow\left\{ -1,1\right\} $ such that $\sum_{x\in A_{i}}\varphi\left(x\right)=0$ for every $i=1,.....,m.$ Let $f\left(n\right)$ denote the smallest possible number of $n$-element sets which form a non-equipartitionable family. Prove that a) $f(4k +2) = 3$ for each nonnegative integer $k$, b) $f\left(2n\right)\leq1+m d\left(n\right)$, where $m d\left(n\right)$ denotes the least positive non-divisor of $n.$

2009 Estonia Team Selection Test, 6

For any positive integer $n$, let $c(n)$ be the largest divisor of $n$ not greater than $\sqrt{n}$ and let $s(n)$ be the least integer $x$ such that $n < x$ and the product $nx$ is divisible by an integer $y$ where $n < y < x$. Prove that, for every $n$, $s(n) = (c(n) + 1) \cdot \left( \frac{n}{c(n)}+1\right)$

2011 Tournament of Towns, 1

An integer $N > 1$ is written on the board. Alex writes a sequence of positive integers, obtaining new integers in the following manner: he takes any divisor greater than $1$ of the last number and either adds it to, or subtracts it from the number itself. Is it always (for all $N > 1$) possible for Alex to write the number $2011$ at some point?

2002 Junior Balkan Team Selection Tests - Romania, 1

Let $n$ be an even positive integer and let $a, b$ be two relatively prime positive integers. Find $a$ and $b$ such that $a + b$ is a divisor of $a^n + b^n$.

2013 Tournament of Towns, 6

The number $1- \frac12 +\frac13-\frac14+...+\frac{1}{2n-1}-\frac{1}{2n}$ is represented as an irreducible fraction. If $3n+1$ is a prime number, prove that the numerator of this fraction is a multiple of $3n + 1$.

2011 Tournament of Towns, 6

Prove that the integer $1^1 + 3^3 + 5^5 + .. + (2^n - 1)^{2^n-1}$ is a multiple of $2^n$ but not a multiple of $2^{n+1}$.

2018 Saudi Arabia IMO TST, 1

Denote $S$ as the set of prime divisors of all integers of form $2^{n^2+1} - 3^n, n \in Z^+$. Prove that $S$ and $P-S$ both contain infinitely many elements (where $P$ is set of prime numbers).

2014 Federal Competition For Advanced Students, P2, 4

For an integer $n$ let $M (n) = \{n, n + 1, n + 2, n + 3, n + 4\}$. Furthermore, be $S (n)$ sum of squares and $P (n)$ the product of the squares of the elements of $M (n)$. For which integers $n$ is $S (n)$ a divisor of $P (n)$ ?

2015 Dutch IMO TST, 5

For a positive integer $n$, we de ne $D_n$ as the largest integer that is a divisor of $a^n + (a + 1)^n + (a + 2)^n$ for all positive integers $a$. 1. Show that for all positive integers $n$, the number $D_n$ is of the form $3^k$ with $k \ge 0$ an integer. 2. Show that for all integers $k \ge 0$ there exists a positive integer n such that $D_n = 3^k$.

1986 IMO Longlists, 58

Find four positive integers each not exceeding $70000$ and each having more than $100$ divisors.

2005 USAMO, 1

Determine all composite positive integers $n$ for which it is possible to arrange all divisors of $n$ that are greater than 1 in a circle so that no two adjacent divisors are relatively prime.

2017 China Team Selection Test, 1

Let $n$ be a positive integer. Let $D_n$ be the set of all divisors of $n$ and let $f(n)$ denote the smallest natural $m$ such that the elements of $D_n$ are pairwise distinct in mod $m$. Show that there exists a natural $N$ such that for all $n \geq N$, one has $f(n) \leq n^{0.01}$.